FINAL

Name: \qquad

SID: \qquad

Problem	Score
1	
2	
3	
4	
5	
Total (of 100)	

- 3 pages of handwritten notes, double sided, 8.5 by 11 inches
- Mark all results with a box.
- Write solutions on the exam sheets. No extra pages.
- Simplify algebraic results as much as possible.
- Show derivations and explain briefly how you arrived at your result.

EE 240B	UC Berkeley, EECS Department
Prof. B. E. Boser	Page 2 of 6

1. [20 points] In Figure $1, C_{s}=1 \mathrm{pF}, C_{f}=6 \mathrm{pF}, C_{L}=1 \mathrm{pF}, C_{x}=300 \mathrm{fF}$.
a) Calculate the dynamic settling time for 1% relative error. Assume that the transconductor is ideal with value $G_{m}=1 \mathrm{mS}$. Assume that all capacitors have been discharged before an input is applied to the circuit.
Note: the feedforward current through C_{f} has significant effect on the solution.
b) Now the transconductor in Figure 1 is realized with the circuit shown in Figure 2.

Assume that both transistors operate in the forward active region with $g_{m 1}=g_{m 2}=$ 2 mS and ignore all parasitics and capacitors except those explicitly shown in the diagrams. Find the maximum value of C_{y} that results in a phase margin (for stability) of 75 degrees.

2. [20 points] The total noise at the output of the SC filter shown in Figure 3 is $\sqrt{\overline{v_{o T}^{2}}}=6 \mu \mathrm{~V}$ rms.
a) Modify the filter such that $\sqrt{\overline{v_{o T}^{2}}}=3 \mu \mathrm{~V}$ without changing the frequency response of the filter. Report the new component values in the Table below.
b) By what approximate factor does the power of the new filter increase compared to the original design?

Figure 3 Switched capacitor filter.

Component	Original Value	New Value
C_{1}	3 pF	
C_{2}	2 pF	
C_{3}	1 pF	
C_{4}	5 pF	
C_{5}	1 pF	
C_{6}	2 pF	
C_{7}	4 pF	
$G_{m 1}$	4 mS	
$G_{m 2}$	2 mS	

EE 240B	UC Berkeley, EECS Department
Prof. B. E. Boser	Page 4 of 6

3. [20 points] The circuit shown below is controlled by an $f_{s}=200 \mathrm{MHz}$ non-overlapping twophase clock.
a) Calculate the value of G_{m} required for a dynamic setting error of 0.02%.
b) Calculate the rms noise voltage at the output of the circuit at the end of phase 2. Assume that the transconductor is realized with a transistor amplifier with $\gamma=0.8$ and $\alpha=2.5$. Include the noise from both clock phases!
Parameter: $C_{1}=1 \mathrm{pF}, C_{2}=200 \mathrm{fF}, C_{3}=2 \mathrm{pF}$. The switch on-resistance contributes negligible to the dynamics of the circuit. Assume that the clock has a 50% duty cycle and ignore the clock non-overlap time.

EE 240B	UC Berkeley, EECS Department
Prof. B. E. Boser	Page 5 of 6

4. [20 points] For the circuit below, find the minimum value of I_{1} that results in no more than 5 ns slewing time for a 1 V step input. Assume that the circuit changes abruptly from slewing to linear settling and that the low-frequency gain is large and that the charge on the capacitors has been properly initialized before the step is applied.
Parameter: $C_{1}=200 \mathrm{fF}, C_{2}=1 \mathrm{pF}, C_{3}=2 \mathrm{pF}, C_{4}=300 \mathrm{fF}, V_{1}^{*}=V_{2}^{*}=100 \mathrm{mV}$.

EE 240B	UC Berkeley, EECS Department
Prof. B. E. Boser	Page 6 of 6

5. [20 points] For the circuit below, determine the flicker noise corner frequency required such that flicker noise adds no more than 20% to the total noise power at v_{o} in the band from 1 Hz to infinity. Assume M_{l} is biased in the forward active region and neglect flicker noise at frequencies higher than the bandwidth of the circuit.
Parameter: low frequency gain $A_{v o}=v_{o} / v_{i}=-2, R_{L}=5 \mathrm{k} \Omega, C_{L}=200 \mathrm{fF}, \gamma=0.8$.

