UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences

Midterm

E. Alon

	Thursday, March 8, 2012	SPRING 2012
	your results on the exam sheets only. Partial credork and reasoning clearly.	lit will be given only if
_	exam, you can ignore flicker noise, assume that the ore all capacitors except those drawn in the circu	
Name: _	Solutions	
SID:		
	Proble	em 1/ 16
	Proble	em 2/ 12
	Proble	em 3/ 12
	Total	/ 40

EECS 240

Problem 1 (16 points) Noise and SNR

In this problem we will be examining the circuit shown above, where I_{sig} is a sinusoidal input current with an amplitude of A_I and angular frequency ω , and i_n^2 is a white noise current source with a power spectral density of $4kT/R_n$.

a) (4 pts) What is the s-domain transfer function that both I_{sig} and the noise current i_n^2 experience to arrive at V_{out} ? You can assume that the transistor M1 is biased in saturation with a given g_m .

b) (4 pts) Given your answer to part a), what is the voltage noise variance at V_{out} due to i_n^2 (i.e., $V_{out}^2(i_n)$)? You should provide your answer in terms of R_{in} , C_{in} , g_m , R_n , and kT.

c) (8 pts) What are the mean-squared signal voltage (i.e., $V_{out}^2(I_{sig})$) and the SNR (i.e., $V_{out}^2(I_{sig})/V_{out}^2(i_n)$) at V_{out} ? Note that you can ignore any noise from the transistors/resistors, and that you should provide your answer in terms of ω , A_I , and the same quantities as part b).

$$V_{out}^{2}(I_{ing}) = \frac{A_{2}^{2}}{2} \cdot \left| \left| \frac{V_{out}(j_{ij})}{I_{in}(j_{im})} \right| \right|^{2}$$

$$= \frac{A_{1}^{2}}{2} \cdot \left(\frac{g_{m}R_{i,n}}{1 + w^{2}R_{i,n}^{2} C_{i,n}^{2}} \right)^{2} \cdot R_{i,n}^{2}$$

$$= \frac{A_{1}^{2}}{2} \cdot \frac{(g_{m}R_{i,n})^{2} \cdot R_{i,n}^{2}}{(1 + w^{2}R_{i,n}^{2} C_{i,n}^{2})^{2}} \cdot \frac{2R_{n}}{kT} \cdot \frac{1}{(g_{m}R_{i,n})^{2}}$$

$$= \frac{A_{1}^{2}R_{n}}{kT} \cdot \frac{R_{i,n}C_{i,n}}{(1 + w^{2}R_{i,n}^{2} C_{i,n}^{2})^{2}}$$

d) (BONUS) If we express $R_{in}C_{in}$ as K_{bw}/ω , what choice of K_{bw} would result in the maximum SNR for this circuit?

$$1+K_{BW}^{2}-4K_{BW}^{2}=0$$

$$3K_{BW}=1$$

$$K_{BW},opt=\frac{1}{\sqrt{3}}$$

Problem 2 (12 points) Amplifier Power

a) (4 pts) How much bias current is required for the amplifier shown below to achieve a gain of A_v and bandwidth of ω_{bw} ? You should provide your answer in terms of A_v , ω_{bw} , C_L , and the V^* of M1.

b) (8 pts) Now let's see what happens if we try to achieve the same total gain Av and bandwidth ω_{bw} using the two stage design show below. For simplicity, let's assume that we will make the gains and bandwidths of each individual amplifier stage identical, that the V*'s of M1 and M2 are identical, and that the bandwidth of a circuit with two poles at ω_p is $\omega_p/2$ (i.e., the overall bandwidth of the two stage amplifier is half the bandwidth of each individual stage). Under these conditions, how much total bias current ($I_{M1} + I_{M2}$) is required to achieve the same total gain and bandwidth? You should provide your answer in terms of the ω_T ($=g_m/C_g$) of the transistors and the same parameters as part a).

c) (**BONUS**) Under what condition will the two-stage design from part b) require less bias current then the single stage design from a)?

$$\frac{T_{0,1}T_{02}}{T_{0}} \angle 1 \rightarrow \frac{\sqrt{Av} w_{3w} c_{v}v^{4v} \left(1+2\sqrt{Av} \frac{w_{3w}}{w_{7}}\right)}{\frac{1}{2}Av w_{3w} c_{v}v^{4v}} \angle 1$$

$$\frac{2}{\sqrt{Av}} \cdot \left(1+2\sqrt{Av} \frac{w_{3w}}{w_{7}}\right) \angle 1$$

$$2\sqrt{Av} \frac{w_{3w}}{w_{7}} \angle \sqrt{\frac{1}{2}} - 1$$

$$\frac{\sqrt{3w}}{w_{7}} \angle \frac{1}{4} - \frac{1}{2\sqrt{Av}}$$

Problem 3 (12 points) Voltage Source Design

In this problem we will examine how to use the structure shown below (which happens to bear some resemblance to a gain-boosted cascode) in order to build a voltage source with a low output impedance. Note that you can assume that the OTA (g_{m2}) is ideal.

a) (6 pts) As a function of g_{m1} , g_{m2} , and C_2 , what is the s-domain output impedance $Z_{out}(s)$ of the circuit shown above?

Jonnout TC2 Vate 2 cut iont = gmi (vont - va)

iont = gmi (vont - (= gmz) vont)

effective gm, is

just gmi (1+ gmz) int= am (vont-va) int = gmi (1+ gmi) vont Pout omi (14 omi/s (2) Zout= gmi scalgma

scalgma

scalgma

- b) (6 pts) Assuming that $g_{m1} = 10 mS$ and that we would like to make sure that at 100 MHz the magnitude of the output impedance (i.e., $\|Zout(j*2\pi*100 MHz)\|$) is less than 10Ω , what is the minimum gain-bandwidth (i.e., g_{m2}/C_2) required of the OTA in part a)? You should provide your answer in Hz.
- H (Easy) (upproximate) mothers

 \[\frac{1}{9m} = 100\Delta 2 \quad \text{but target } \text{Zut=10Delta (comH2)} \]

 So, OTA steeds to provide a gran of NIO at 100 mHz

 \[\text{Sun-Bund-cath} = 10-100 mHz = \text{IGHz} \]