# UNIVERSITY OF CALIFORNIA <br> College of Engineering <br> Department of Electrical Engineering and Computer Sciences 

E. Alon

Midterm
EECS 240
Thursday, March 8, 2012
SPRING 2012

You should write your results on the exam sheets only. Partial credit will be given only if you show your work and reasoning clearly.

Throughout the exam, you can ignore flicker noise, assume that the $r_{o}$ of the transistors is infinite, and ignore all capacitors except those drawn in the circuit unless the problem states otherwise.

Name: $\qquad$

SID:

Problem 1 / 16

Problem 2 $\qquad$ / 12

Problem 3 / 12

Total
/ 40

Problem 1 (16 points) Noise and SNR


In this problem we will be examining the circuit shown above, where $\mathrm{I}_{\text {sig }}$ is a sinusoidal input current with an amplitude of $A_{I}$ and angular frequency $\omega$, and $\mathrm{i}_{\mathrm{n}}{ }^{2}$ is a white noise current source with a power spectral density of $4 \mathrm{kT} / \mathrm{R}_{\mathrm{n}}$.
a) ( $\mathbf{4} \mathbf{~ p t s}$ ) What is the s-domain transfer function that both $\mathrm{I}_{\text {sig }}$ and the noise current $\mathrm{i}_{\mathrm{n}}{ }^{2}$ experience to arrive at $\mathrm{V}_{\text {out }}$ ? You can assume that the transistor M1 is biased in saturation with a given $\mathrm{gm}_{\mathrm{m}}$.

$$
\begin{aligned}
& \frac{V_{\text {oat }}(0)}{I_{10}(0)}=2 \ldots(0) \cdot A v(1) \\
& \frac{V_{a+}\left(L_{0}\right)}{I_{N(N)}}=\frac{-g_{m} R_{R_{N} N} \cdot R_{1 N}}{\left(1+R_{1+N}\left(R_{N}\right)^{2}\right.}
\end{aligned}
$$

b) ( $\mathbf{4} \mathbf{~ p t s ) ~ G i v e n ~ y o u r ~ a n s w e r ~ t o ~ p a r t ~ a ) , ~ w h a t ~ i s ~ t h e ~ v o l t a g e ~ n o i s e ~ v a r i a n c e ~ a t ~} V_{\text {out }}$ due to $i_{n}{ }^{2}$ (ie., $V_{\text {out }}{ }^{2}\left(i_{n}\right)$ )? You should provide your answer in terms of $R_{i n}, C_{i n}, g_{m}$, $\mathrm{R}_{\mathrm{n}}$, and kT .

$$
V_{\text {ant }}^{2}\left(i_{N}\right)=4 k T \cdot \frac{1}{R_{N}} \cdot \int_{0}^{\infty}\left\|\frac{V_{\text {ant }}(f)}{i_{N}\left(f_{j}\right.}\right\|^{2} d f
$$

* Expand dewomonentor of $\frac{V a t(s)}{I_{1} n(s)}$ to make integral result mure obvious:

$$
\begin{aligned}
& \frac{V_{\text {art }}(s)}{I_{i n}(s)}=\frac{-y m R_{i n} \cdot R_{1 N}}{s^{2}\left(R_{1 N}(1,)^{2}+2 R_{1 w} C_{1 n s+1}\right.} \\
& \left.\rightarrow V_{\text {ait }}^{2} l_{1 N}\right)=4 k T \cdot \frac{1}{R_{N}} \cdot \frac{\left(g_{M} R_{1 N}\right)^{2} R_{1.1}^{2}}{8 R_{1 N} L_{I_{N}}} \\
& =\left\lvert\, \frac{K_{C T}}{C_{1 N}} \cdot \frac{R_{1 N}}{2 R_{N}} \cdot\left(g_{m} R_{I N}\right)^{2}\right.
\end{aligned}
$$

c) (8 pts) What are the mean-squared signal voltage (ie., $\mathrm{V}_{\text {out }}{ }^{2}\left(\mathrm{I}_{\text {sig }}\right)$ ) and the SNR (ie., $\mathrm{V}_{\text {out }}{ }^{2}\left(\mathrm{I}_{\text {sig }}\right) / \mathrm{V}_{\text {out }}{ }^{2}\left(\mathrm{i}_{\mathrm{n}}\right)$ ) at $\mathrm{V}_{\text {out }}$ ? Note that you can ignore any noise from the transistors/resistors, and that you should provide your answer in terms of $\omega, \mathrm{A}_{\mathrm{I}}$, and the same quantities as part b).

$$
\begin{aligned}
& \operatorname{Vont}_{\text {ont }}\left(I_{\text {sin }}\right)=\frac{A_{I}^{2}}{2} \cdot\left\|\frac{\operatorname{Vant}(j \omega)}{I_{i N}(j \omega)}\right\|^{2} \\
& =\frac{A_{I}^{2}}{2} \cdot \frac{\left(y_{m} R_{\omega \omega}\right)^{2} \cdot R_{n \omega}^{2}}{\left(1+\omega^{2} R_{1 \omega}^{2} C_{1 \omega}^{2}\right)^{2}} \\
& S_{N R}=\frac{A_{I}^{2}}{2} \cdot \frac{\left(y_{m} R_{N}\right)^{2} \cdot R_{1 N}^{2}}{\left(1+w^{2} R_{N \omega}^{2} C_{1,2}^{2}\right)^{2}} \cdot \frac{C_{1 N}}{k T} \cdot \frac{2 R_{N}}{R_{1 N}} \cdot \frac{1}{\left(y_{m} R_{1 N}\right)^{2}} \\
& =\frac{A_{I}^{2} R_{N}}{k T} \cdot \frac{R_{1 N} C_{1 N}}{\left(1+w^{2} R_{1 N}^{2} C_{1 N}^{2}\right)^{2}}
\end{aligned}
$$

d) (BONUS) If we express $\mathrm{R}_{\mathrm{in}} \mathrm{C}_{\mathrm{in}}$ as $\mathrm{K}_{\mathrm{bw}} / \omega$, what choice of $\mathrm{K}_{\mathrm{bw}}$ would result in the maximum SNR for this circuit?

$$
\begin{gathered}
S_{N R}=\frac{A_{I}^{2} R_{N}}{k+\omega} \cdot \frac{K_{b w}}{\left(1+K_{B W}^{2}\right)^{2}} \\
\begin{array}{c}
\frac{\partial S N R}{\partial K_{B W}}=\frac{A_{3}^{2} R_{w}}{K_{W} T} \cdot \frac{\left(1+K_{B W}^{2}\right)^{2}-K_{B W} \cdot 2\left(1+K_{B W}^{2}\right) \cdot 2 K_{B W}}{\left(1+K_{B W)^{2}}^{2}\right.}=0 \\
1+K_{B W}^{2}-4 K_{B W}^{2}=0 \\
3 K_{B W}^{2}=1 \\
K_{B W, o p t}+\frac{1}{\sqrt{3}}
\end{array}
\end{gathered}
$$

Problem 2 (12 points) Amplifier Power
a) ( 4 pts) How much bias current is required for the amplifier shown below to achieve a gain of $A_{v}$ and bandwidth of $\omega_{b w}$ ? You should provide your answer in terms of $A_{v}, \omega_{b w}, C_{L}$, and the $\mathrm{V}^{*}$ of M1.


$$
\begin{aligned}
& G_{a, m} b_{\text {urdwadth }}=\frac{g_{m}}{C_{L}}=A_{V} w_{B W} \\
& G_{m}=A_{V} w_{B W} C_{L} \\
& g_{m}=\frac{2 I_{D}}{V^{*}} \\
& L_{B}=\frac{1}{2} g_{m} V^{*} \\
& I_{D}=\frac{1}{2} A_{V} w_{B W} L_{L} V^{*}
\end{aligned}
$$

b) ( $\mathbf{8} \mathbf{p t s}$ ) Now let's see what happens if we try to achieve the same total gain Av and bandwidth $\omega_{\mathrm{bw}}$ using the two stage design show below. For simplicity, let's assume that we will make the gains and bandwidths of each individual amplifier stage identical, that the $\mathrm{V}^{*}$ 's of M1 and M2 are identical, and that the bandwidth of a circuit with two poles at $\omega_{\mathrm{p}}$ is $\omega_{\mathrm{p}} / 2$ (i.e., the overall bandwidth of the two stage amplifier is half the bandwidth of each individual stage). Under these conditions, how much total bias current ( $\mathrm{I}_{\mathrm{M} 1}+\mathrm{I}_{\mathrm{M} 2}$ ) is required to achieve the same total gain and bandwidth? You should provide your answer in terms of the $\omega_{\mathrm{T}}$ ( $=\mathrm{g}_{\mathrm{m}} / \mathrm{Cg}_{\mathrm{g}}$ ) of the transistors and the same parameters as part a).


* To achieve same tutor guise $A_{\text {stage }}^{2}=A_{v}$

$$
\begin{aligned}
& \rightarrow \text { stage }=\sqrt{A N} \\
& \text { * To achieve some total bualworth, } W_{\text {stage }} / 2=W_{B W} \\
& 4 w_{\text {stage }}=2 w_{B W} \\
& \text { * } I_{D} \text { fur } 2 \text { and stye: } I_{D 2}=\frac{1}{2} \cdot \sqrt{A N} \cdot 2 w_{B W} \cdot L_{L} \cdot V^{*} \\
& I_{O_{2}}=\sqrt{A V} W_{B W} C_{L} V^{*} \\
& \text { * } \begin{aligned}
g_{m 2} & =2 \sqrt{A_{V}} w_{B W} C_{L} \quad g_{m 2} \\
C_{g_{22}} & =2 \sqrt{A_{V}} \frac{w_{B W}}{w_{T}} \cdot C_{L} \\
I_{D L} & =\frac{1}{2} \sqrt{A_{V}} \cdot 2 w_{B W} \cdot V^{*} \cdot\left(2 \sqrt{A_{V}} \frac{w_{B w}}{w_{T}} \cdot C_{L}\right)
\end{aligned} \\
& \rightarrow I_{D_{1}+I_{D 2}}=\sqrt{A_{V}} w_{B W} C_{C} V^{*} \cdot\left(1+2 \sqrt{A_{V}} \frac{w_{B W}}{w_{T}}\right)
\end{aligned}
$$

c) (BONUS) Under what condition will the two-stage design from part b) require less bias current then the single stage design from a)?

$$
\begin{aligned}
& \frac{I_{D_{1}+} I_{n 2}}{I_{D}}<1 \rightarrow \frac{\sqrt{A v} w_{3 w} C_{C} V^{*}\left(1+2 \sqrt{A_{V}} \frac{w_{3 w}}{w_{\tau}}\right)}{\frac{1}{2} A v w_{3 W} C_{L} V^{*}}<1 \\
& \frac{2}{\sqrt{A_{v}}} \cdot\left(1+2 \sqrt{A_{v}} \frac{w_{B w}}{w_{\tau}}\right)<1 \\
& 2 \sqrt{A_{v}} \frac{w_{B w}}{w_{T}}<\frac{\sqrt{A v}}{2}-1 \\
& \frac{W_{B W}}{W_{T}}<\frac{1}{4}-\frac{1}{2 \sqrt{A_{V}}}
\end{aligned}
$$

Problem 3 (12 points) Voltage Source Design
In this problem we will examine how to use the structure shown below (which happens to bear some resemblance to a gain-boosted cascode) in order to build a voltage source with a low output impedance. Note that you can assume that the OTA ( $\mathrm{g}_{\mathrm{m} 2}$ ) is ideal.

a) ( $6 \mathbf{p t s}$ ) As a function of $g_{m 1}, g_{m 2}$, and $C_{2}$, what is the s-domain output impedance $\mathrm{Z}_{\text {out }}(\mathrm{s})$ of the circuit shown above?

Small signal model:


$$
\begin{aligned}
& i_{\text {out }}=g_{m 1}\left(v_{\text {out }}-v_{n}\right) \\
& \text { out }=g_{m 1}\left(v_{\text {out }}-\left(\frac{=g_{m 2}}{S C_{2}}\right) v_{\text {out }}\right) \\
& i_{\text {unto }}=g_{m 1}\left(1+\frac{g_{m 2}}{\delta C_{2}}\right) v_{\text {out }} \\
& \frac{\text { out }}{\text { out }}=\frac{1}{g_{m_{1}}\left(1+g m_{2} / s c_{2}\right)} \\
& Z_{\text {unto }}=\frac{1}{g_{m 1}} \cdot \frac{\delta C_{2} l_{m_{2}}}{\delta_{2} / g_{m_{2}}+1}
\end{aligned}
$$

b) ( $6 \mathbf{p t s}$ ) Assuming that $\mathrm{g}_{\mathrm{m} 1}=10 \mathrm{mS}$ and that we would like to make sure that at 100 MHz the magnitude of the output impedance (i.e., $\|$ Rout( $\left({ }^{*} 2 \pi^{*} 100 \mathrm{MHz}\right) \|$ ) is less than $10 \Omega$, what is the minimum gain-bandwidth (ie., $g_{m} / \mathrm{C}_{2}$ ) required of the OTA in part a)? You should provide your answer in Hz .

* "Easy" (approximate) mothud:

$$
\frac{1}{g_{m 1}}=100 \Omega \text {, but } \alpha_{\text {reset }} z_{n} t=10 \Omega @ 100 \mathrm{mH}_{2}
$$

So, OTA seeds to provide a gur of 210 at $100 \mathrm{mHz}_{2}$

$$
\rightarrow \text { Gawd Burdradth }=10.100 \mathrm{MH}_{2}=1 \mathrm{GH}_{2}
$$

* Precise method:

$$
\begin{aligned}
& \left\|z_{\text {out }}\right\|^{2}=\frac{1}{g_{m 1}^{2}} \cdot \frac{w^{2} \cdot c_{2}^{2} / y_{m 2}^{2}}{w^{2} c_{2}^{2} / y_{m 2}^{2}+1}=z_{\text {turret }}^{2} \\
& L_{a} w^{2} /\left(g m_{2} / c_{2}\right)^{2}=g_{m 1}^{2} z_{\text {target }}^{2}\left(1+w^{2} /\left(g_{m 2} / n_{2}\right)^{2}\right) \\
& \left(g_{n}^{2} z_{t u r g e t}^{2}-1\right) \cdot \frac{w^{2}}{\left(g_{m 2} / u_{2}\right)^{2}}=-g_{m}^{2} z_{t u r g e t}^{2} \\
& \frac{\omega^{2}}{\left(g_{m 2} / c_{2}\right)^{2}}=\frac{g_{m}^{2} Z^{2} t_{\text {mind }}}{1-g_{r}^{2} 2 t_{u r g e t}^{2}} \\
& \frac{g_{m 2}}{c_{2}}=\frac{\sqrt{1-g_{m}^{2} Z_{t+m_{m} t}^{2}}}{g_{m}{ }^{2}+u_{\text {gat }}} \cdot w \\
& \frac{g_{m 2}}{c_{2}}=\frac{\sqrt{1-0.1^{2}}}{0.1} \cdot W \rightarrow G B W \approx 995 \mathrm{MH}_{2}
\end{aligned}
$$

