EECS 20, First Midterm Exam

February 23, 2001

Last name: First name:

Student ID: Lab user ID:

Email: Lab section:

Problem 1. (20 points)

If the first four inputs are 3, 3, 0, 1, what are the first four outputs of B?

0, 3, 6, 6

Which of the following terms characterize the system B (answer Yes or No for each):

reactive Yes

discrete-time Yes

memory-free No

causal Yes

finite-state No

deterministic Yes

Complete the following:

$$B \colon [Nats_0 \to Nats_0] \to [Nats_0 \to Nats_0]$$
 such that $\forall \, x \in [Nats_0 \to Nats_0], \, \forall \, y \in Nats_0, \ (B(x))(y) = \sum_{0 \le z < y} x(z).$

Problem 2. (30 points)

Draw the transition diagram of a state machine that implements the nondeterministic system $A \subseteq [Nats_0 \to Bins] \times [Nats_0 \to Bins_{\perp}]$ such that $\forall x \in [Nats_0 \to Bins], \forall y \in [Nats_0 \to Bins_{\perp}], (x, y) \in A$ iff

- (1) $y(0) = \bot$;
- (2) $\forall z \in Nats$, either y(z) = x(z-1) or $y(z) = \bot$; and
- (3) $\forall z \in Nats$, if $y(z) = \bot$ then $y(z-1) \neq \bot$.

Note that A is a lossy channel with unit delay that never drops two inputs in a row.

States:

- 0 previous input was 0
- 1 previous input was 1
- \perp previous input was dropped

Problem 3. (30 points)

Draw a block diagram consisting of and, or, not, and Delay systems to implement the following state machine:

Solution:

Problem 4. (20 points)

Use minimization to find the transition diagram of the smallest state machine that is equivalent to the following state machine:

Splitting:

$$\begin{aligned} & \{\{a,b,c,d\}\} \\ & \{\{c\},\{a,b,d\}\} \\ & \{\{c\},\{a\},\{b,d\}\} \end{aligned}$$

