EECS 20, First Midterm Exam

February 23, 2001

Last name:	First name:
Student ID:	Lab user ID:
Email:	Lab section:

Problem 1. (20 points)

If the first four inputs are $3,3,0,1$, what are the first four outputs of B ?
$0,3,6,6$
Which of the following terms characterize the system B (answer Yes or No for each):
reactive Yes
discrete-time Yes
memory-free No
causal Yes
finite-state No
deterministic Yes
Complete the following:
$B:\left[\right.$ Nats $_{0} \rightarrow$ Nats $\left._{0}\right] \rightarrow\left[\right.$ Nats $_{0} \rightarrow$ Nats $\left._{0}\right]$ such that $\forall x \in\left[\right.$ Nats $_{0} \rightarrow$ Nats $\left._{0}\right], \forall y \in$ Nats $_{0}$, $(B(x))(y)=\sum_{0 \leq z<y} x(z)$.

Problem 2. (30 points)
Draw the transition diagram of a state machine that implements the nondeterministic system $A \subseteq\left[\right.$ Nats $_{0} \rightarrow$ Bins $] \times\left[\right.$ Nats $_{0} \rightarrow$ Bins $\left._{\perp}\right]$ such that $\forall x \in\left[\right.$ Nats $s_{0} \rightarrow$ Bins $], \forall y \in\left[\right.$ Nats $s_{0} \rightarrow$ Bins $\left._{\perp}\right]$, $(x, y) \in A$ iff
(1) $y(0)=\perp$;
(2) $\forall z \in$ Nats, either $y(z)=x(z-1)$ or $y(z)=\perp$; and
(3) $\forall z \in$ Nats, if $y(z)=\perp$ then $y(z-1) \neq \perp$.

Note that A is a lossy channel with unit delay that never drops two inputs in a row.
States:
0 previous input was 0
1 previous input was 1
$\perp \quad$ previous input was dropped

Problem 3. (30 points)
Draw a block diagram consisting of and, or, not, and Delay systems to implement the following state machine:

Solution:

Problem 4. (20 points)
Use minimization to find the transition diagram of the smallest state machine that is equivalent to the following state machine:

Splitting:

$$
\begin{aligned}
& \{\{a, b, c, d\}\} \\
& \{\{c\},\{a, b, d\}\} \\
& \{\{c\},\{a\},\{b, d\}\}
\end{aligned}
$$

