EE 20N: Fall 2003

Midterm 2
 Professor Sheila Ross

Problem 1:

Consider the following signal: $x(t)=\sin (t)+1 / 4 \cos (7 t) \quad$ for all t in Reals
This signal is shown below.

a) What is the fundamental frequency ω_{0} for this signal?
b) Of the graphs of A_{k} and φ_{k} shown, only one pair of graphs (one A_{k} graph and its corresponding φ_{k} graph) shows the correct trigonometric Fourier series for this signal. Which is the correct graph for A_{k} ? Which is the corresponding correct graph for φ_{k} ?

Choice 1

Choice 3

Choice 2

Choice 4

Problem 2:

Consider the continuous-time system with input x and output y defined by the diagram below.

Find the frequency response $H(\omega)$ for this system.

Problem 3:

Consider the continuous-time LTI system described by the impulse response
$\mathrm{h}(t)=\delta(t)+2 \delta(t-2)+3 \delta(t+3)$
a) Is this a FIR system or an IIR system? Justify your answer.
b) Is this system causal? Justify your answer.
c) For a general input x, give a simple expression for the output y. Justify your answer.

Problem 4:

Indicate whether the following continuous-time systems are linear, time-invariant, and/or causal. You are not required to show your reasoning.
a) $\mathrm{S}(x)(t)=e^{i 2 \pi t} x(t)$

- Linear?
- Time-invariant?
- Causal?
b) $\mathrm{S}(x)(t)=x(-t-2)$
- Linear?
- Time-invariant?
- Causal?
c) $\mathrm{S}(x)(t)=x(t-2)^{2}$
- Linear?
- Time-invariant?
- Causal?

Problem 5:

Consider the discrete-time system given by
$y(n)+2 y(n-2)=x(n)$
a) Find the frequency response $\mathrm{H}(\varphi)$ for this system.
b) Provide matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D and a state $s(n)$ leading to the equivalent description
$s(n+1)=\mathrm{A} s(n)+\mathrm{B} x(n)$
$y(n)=\mathrm{C} s(n)+\mathrm{D} x(n)$
Find the impulse response $\mathrm{h}(n)$ for this system.
Hint: Is this system causal? What does that tell you about $\mathrm{h}(n)$?

Problem 6:

Consider the continuous-time system with magnitude response and phase response given by
$|H(\omega)|=10$ for $\omega \in[-\pi / 2, \pi / 2], 0$ otherwise
and the continuous-time input
$x(t)=4+3 \sin (\pi t / 3)-2 \cos (\pi t / 2)-\sin (\pi t)$
a) What is the period of the input x ?
b) What is the output y corresponding to the input x ? Express your answer without using imaginary numbers.

Problem 7:

Consider the discrete-time signal x depicted below over three periods:

Find both the trigonometric and complex exponential Fourier coefficients for this signal. The simpler your final answer is, the more credit you will receive.

Problem 8:

Consider the continuous-time "mystery signal" illustrated below for one period:

a) What is the fundamental frequency ω_{0} for this signal?
b) Of the graphs of $\left|X_{k}\right|$ and $\angle X_{k}$ on the next page, only one pair of graphs (one $\left|X_{k}\right|$ graph and its corresponding $\angle \mathrm{X}_{\mathrm{k}}$ graph) shows the correct complex exponential Fourier series for this signal.
Which is the correct graph for $\left|\mathrm{X}_{\mathrm{k}}\right|$? Which is the corresponding correct graph for $\angle \mathrm{X}_{\mathrm{k}}$? Justify your answer.

Choice b

Choice d

Choice 1

Choice 3

Choice 2

Choice 4

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
If you have any questions about these online exams, please contact examfile@hkn.eecs.berkeley.edu.

