EE 20N: Fall 2003

Midterm 2 Professor Sheila Ross

Problem 1:

Consider the following signal: $x(t) = \sin(t) + \frac{1}{4}\cos(7t)$ for all *t* in *Reals*

This signal is shown below.

a) What is the fundamental frequency ω_0 for this signal?

b) Of the graphs of A_k and ϕ_k shown, only one pair of graphs (one A_k graph and its corresponding ϕ_k graph) shows the correct trigonometric Fourier series for this signal. Which is the correct graph for A_k ? Which is the corresponding correct graph for ϕ_k ?

Problem 2:

Consider the continuous-time system with input *x* and output *y* defined by the diagram below.

Find the frequency response $H(\omega)$ for this system.

Problem 3:

Consider the continuous-time LTI system described by the impulse response

 $\mathbf{h}(t) = \delta(t) + 2\delta(t-2) + 3\delta(t+3)$

a) Is this a FIR system or an IIR system? Justify your answer.

b) Is this system causal? Justify your answer.

c) For a general input *x*, give a *simple* expression for the output *y*. *Justify your answer*.

Problem 4:

Indicate whether the following continuous-time systems are linear, time-invariant, and/or causal. You are *not required* to show your reasoning.

a) $S(x)(t) = e^{i2\pi t}x(t)$

- Linear?
- Time-invariant?
- Causal?

b) S(x)(t) = x(-t - 2)

- Linear?
- Time-invariant?
- Causal?

c) $S(x)(t) = x(t - 2)^2$

- Linear?
- Time-invariant?
- Causal?

Problem 5:

Consider the discrete-time system given by

y(n) + 2y(n - 2) = x(n)

a) Find the frequency response $H(\phi)$ for this system.

b) Provide matrices A, B, C and D and a state s(n) leading to the equivalent description

s(n + 1) = As(n) + Bx(n)y(n) = Cs(n) + Dx(n)

Find the impulse response h(n) for this system. Hint: Is this system causal? What does that tell you about h(n)?

Problem 6:

Consider the continuous-time system with magnitude response and phase response given by

 $|H(\omega)| = 10$ for $\omega \in [-\pi/2, \pi/2]$, 0 otherwise

and the continuous-time input

 $x(t) = 4 + 3\sin(\pi t/3) - 2\cos(\pi t/2) - \sin(\pi t)$

a) What is the period of the input *x*?

b) What is the output *y* corresponding to the input *x*? Express your answer *without using imaginary numbers*.

Problem 7:

Consider the discrete-time signal *x* depicted below over three periods:

Find *both* the trigonometric and complex exponential Fourier coefficients for this signal. The *simpler* your final answer is, the *more credit* you will receive.

Problem 8:

a) What is the fundamental frequency ω_0 for this signal?

b) Of the graphs of $|X_k|$ and $\angle X_k$ on the next page, only one pair of graphs (one $|X_k|$ graph and its corresponding $\angle X_k$ graph) shows the correct complex exponential Fourier series for this signal.

Which is the correct graph for $|X_k|$? Which is the corresponding correct graph for $\angle X_k$? Justify your answer.

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley

If you have any questions about these online exams, please contact <u>examfile@hkn.eecs.berkeley.edu</u>.