EECS 20. Midterm No. 1 October 8, 2001.

Please use these sheets for your answer and your work. Use the backs if necessary. Write clearly and put a box around your answer, and show your work.

Print your name and lab time below.

Name:

Lab time:

Problem 1:

Problem 2:

Problem 3:

Total:

1. **40 points.** Please indicate whether the following statements are true or false. There will be no partial credit. They are either true or false. So please be sure of your answer.

(a)
$$[\{1, 2, 3\} \rightarrow \{a, b\}] \subset [Naturals \rightarrow \{a, b\}]$$

(b) $\{g \mid g = graph(f) \land f: X \rightarrow Y\} \subset X \times Y$

(c) $F: [Reals \rightarrow Reals] \rightarrow [Reals \rightarrow Reals]$, such that $\forall t \in Reals$, $\forall x \in [Reals \rightarrow Reals]$, $(F(x))(t) = \sin(2\pi \cdot 440t)$ is a memoryless system.

(d) Let $f: Reals \to Reals$ and $g: Reals \to Reals$, where g is obtained by delaying f by $\tau \in Reals$. That is,

 $\forall t \in Reals, g(t) = f(t - \tau).$

Then $graph(g) \subset graph(f)$.

2. **30 points**. Consider a state machine where

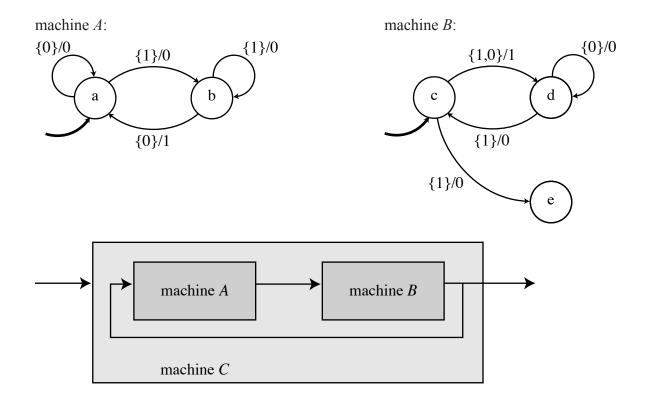
$$Inputs = \{1, absent\},$$

$$Outputs = \{0, 1, absent\},$$

$$States = \{a, b, c, d, e, f\},$$

$$initialState = a,$$

and the *update* function is given by the following table (ignorring stuttering):


(currentState, inputSymbol)	(nextState, outputSymbol)
(a, 1)	(<i>b</i> , 1)
(b, 1)	(c, 0)
(c, 1)	(d, 0)
(d, 1)	(e, 1)
(e, 1)	(f, 0)
(f, 1)	(a, 0)

(a) Draw the state transition diagram for this machine.

(b) Ignoring stuttering, give the *Behaviors* relation for this machine.

(c) Find a state machine w machine, and give the	vith three states that is bisimilar bisimulation relation.	to this one. Draw that state

3. **30 points.** Consider the following three state machines:

Machines A and B have input and output alphabets

$$Inputs = Outputs = \{0, 1, absent\}.$$

Machine C has the same output alphabeet, but input alphabet $Inputs_C = \{react, stutter\}$.

(a) Which of these machines is deterministic?

(b)	Draw the state transition diagram for the composition (machine <i>C</i>), showing only states that are reachable from the initial state.
(c)	Give the $Behaviors_C$ relation for the composition of machine C , ignoring stuttering.