EECS20n, Solution to Midterm 2, 11/17/00

1. $\mathbf{1 0}$ points Write the following in Cartesian coordinates (i.e. in the form $x+j y$)
(a) 2 points $j^{3}-j^{2}+j+1=-j+1+j+1=2$
(b) 2 points $(1-j 1) /(1+j 1)=-j$
(c) 2 points $\sqrt{\cos \pi / 4+j \sin \pi / 4}= \pm(\cos \pi / 8+j \sin \pi / 8)$

Write the following in polar coordinates (i.e. in the form $r e^{j \theta}$)
(a) 2 points $1+j 1=\sqrt{2} e^{j \pi / 4}$
(b) 2 points $(1+j 1) /(1-j 1)=e^{j \pi / 2}$
2. 10 points Which of the following discrete-time or continuous-time signals is periodic. Answer yes or no. If the signal is periodic, give its fundamental period and state the units. Suppose that for a discrete-time signal, n denotes seconds, and for a continuous-time signal, t denotes minutes.
(a) 2 points $\forall n \in$ Ints, $\quad x(n)=e^{\sqrt{2} n} \quad$ Periodic NO;
(b) 2 points $\forall t \in$ Reals, $\quad x(t)=e^{\sqrt{2} t} \quad$ Periodic YES; Period $=2 \pi / \sqrt{2}$ min
(c) 2 points $\forall n \in$ Ints, $\quad x(n)=\cos 3 \pi n+\sin (3 \pi n+\pi / 7) \quad$ Periodic YES; Period $=4$ sec

4 points Find A, θ, ω in the following expression:

$$
\begin{aligned}
A \cos (\omega t+\theta) & =\cos \left(2 \pi \times 10,000 t+\frac{\pi}{4}\right)+\sin \left(2 \pi \times 10,000 t+\frac{\pi}{4}\right) \\
& =\sqrt{2} \cos (2 \pi \times 10000 t)
\end{aligned}
$$

So $A=\sqrt{2}, \omega=20000, \theta=0$.

Figure 1: Plots for Problem 3
3. 10 points On Figure 1 plot the amplitude and phase response of the following frequency responses. On your plots carefully mark the values for $\omega=0$ and for one other non-zero value of ω.
(a) 4 points $\forall \omega \in$ Reals, $\quad H_{1}(\omega)=1+j \omega$
(b) 4 points $\forall \omega \in$ Reals, $\quad H_{2}(\omega)=1+\cos \omega$

The frequency response is plotted only for $\omega>0$ since $|H(\omega)|$ is even and $\angle H(\omega)$ is odd.

2 points Which of H_{1}, H_{2} can be the frequency response of a discrete-time system?
(a) $\left|H_{1}(\omega)\right|=\left[1+\omega^{2}\right]^{1 / 2}, \angle H_{1}(\omega)=\tan ^{-1}(\omega)$
(b) $\left|H_{2}(\omega)\right|=1+\cos \omega, \angle H_{2}(\omega)=0$
H_{2} can be the frequency response of a discrete time system since it is periodic with period 2π.

Figure 2: Impulse and step response for Problem 4
4. $\mathbf{1 0}$ points A discrete-time system H has impulse response $h:$ Ints \rightarrow Reals given by

$$
h(n)= \begin{cases}1, & n=-1,0,1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) $\mathbf{3}$ points What is the step response of H, i.e. the output signal when the input signal is step, where $\operatorname{step}(n)=1, n \geq 0$, and step $(n)=0, n<0$? You can give your answer as a plot or as an expression.
(b) $\mathbf{3}$ points What is the frequency response of H ?
(c) $\mathbf{4}$ points What is the output signal of H for the following input signals?
i. $\forall n, \quad x(n)=\cos n$
ii. $\forall n, \quad x(n)=\cos (n+\pi / 6)$
(a) The step response is

$$
\begin{aligned}
\forall n, \quad y(n) & =h(-1) \operatorname{step}(n+1)+h(0) \operatorname{step}(n)+h(1) \operatorname{step}(n-1) \\
& = \begin{cases}0, & n \leq-2 \\
1, & n=-1 \\
2, & n=0 \\
3, & n \geq 1\end{cases}
\end{aligned}
$$

This is also shown on the right in Figure 2
(b) The frequency response is

$$
\forall \omega, \quad \hat{H}(\omega)=h(-1) e^{j \omega}+h(0)+h(1) e^{-j \omega}=1+2 \cos \omega
$$

(c) The response y is
i. $\forall n, \quad y(n)=[1+2 \cos 1] \cos n$
ii. $\forall n, \quad y(n)=[1+2 \cos 1] \cos (n+\pi / 6)$

5. 10 points

(a) $\mathbf{4}$ points Find the frequency response for the LTI systems described by these differential equations (input is x, output is y)
i. $\dot{y}(t)+0.5 y(t)=x(t)$
ii. $\ddot{y}(t)+0.5 \dot{y}(t)+0.25 y(t)=\dot{x}(t)+x(t)$
(b) 2 points What is the response of the first system above for the input $\forall t, \quad x(t)=$ $e^{j(100 t+\pi / 4)}$?
(c) $\mathbf{4}$ points Find the frequency response for the LTI systems described by these difference equations (input is x, output is y)
i. $y(n)+0.5 y(n-1)=x(n)$
ii. $y(n)+y(n-1)+0.25 y(n-2)=x(n)+x(n-1)$
(a) The frequency response is
i. $\hat{H}(\omega)=\frac{1}{j \omega+0.5}$
ii. $\frac{j \omega+1}{-\omega^{2}+0.5 j \omega+0.25}$
(b) The response is

$$
\begin{aligned}
\forall t, y(t) & =\hat{H}(100) e^{j(100 t+\pi / 4)} \\
& =\frac{1}{0.5+j 100} e^{j(100 t+\pi / 4)} \approx \frac{1}{100} e^{j(100 t-\pi / 4)}
\end{aligned}
$$

(c) (i) $\frac{1}{1+0.5 e^{-j \omega}}$
(ii) $\frac{1+e^{-j \omega}}{1+e^{-j \omega}+0.25 e^{-2 j \omega}}$

Figure 3: Periodic signals for Problem 6
6. 10 points Figure 3 plots two continuous-time periodic signals x and y both with period 1 second, and two discrete-time signals u and v both with period 10 samples. The plots are given only for one period. Suppose the exponential Fouriers Series representations of these signals are given as:

$$
\begin{aligned}
\forall t \in \text { Reals, } & x(t)= \\
\forall t \in \text { Reals }, \quad y(t)= & =\sum_{k=-\infty}^{\infty} X_{k} e^{j k \omega_{x} t} \\
\forall n \in \text { Ints, }, \quad u(n) & =\sum_{k=0} e^{j k \omega_{y} t} \\
\forall n \in \operatorname{lnts}, \quad v(n) & =\sum_{k=0}^{j k \omega_{u} n} V_{k} e^{j k \omega_{v} n}
\end{aligned}
$$

(a) 2 points Give the values of $\omega_{x}=2 \pi \mathrm{rad} / \mathrm{sec}, \omega_{y}=2 \pi \mathrm{rad} / \mathrm{sec}, \omega_{u}=\pi / 5 \mathrm{rad} / \mathrm{sample}$, $\omega_{v}=\pi / 5 \mathrm{rad} / \mathrm{sample}$.
(b) 2 points Calculate the values of the coefficients $X_{0}=0.25, Y_{0}=0.25, U_{0}=0.4$, $V_{0}=0.4$. These are just the average values ofthe signal over one period.
(c) 3 points Express y as a delayed version of x and v as a delayed version of u.
$\forall t, y(t)=x(t-0.5), \forall n, v(n)=x(n-3)$.
(d) $\mathbf{3}$ points Express the FS coefficients $\left\{Y_{k}\right\}$ in terms of $\left\{X_{k}\right\}$ and $\left\{V_{k}\right\}$ in terms of $\left\{U_{k}\right\}$. $\forall k, \quad Y_{k}=X_{k} e^{-j k \pi}, \quad V_{k}=U_{k} e^{-j k 3 \pi / 5}$.

Figure 4: Feedback systems for Problem 7
7. 10 points Figure 4 shows a feedback system obtained by composing three LTI systems. In the figure, $H_{k}(\omega), k=1,2,3$ is the frequency response of the three LTI systems.
(a) $\mathbf{5}$ points Calculate the frequency response $H(\omega)$ of the feedback system in terms of the H_{k}.
(b) 5 points Suppose $H_{k}(\omega)=1 /(1+j 2 \omega)$ for all $k=1,2,3$. Calculate $H(0), H(1)$ and $\lim _{\omega \rightarrow \infty} H(\omega)$.
(a) The frequency response is

$$
\begin{equation*}
H(\omega)=\frac{H_{1}(\omega) H_{2}(\omega)}{1+H_{1}(\omega) H_{2}(\omega) H_{3}(\omega)} \tag{1}
\end{equation*}
$$

(b) We have, $H_{k}(0)=1, H_{k}(1)=1 /(1+2 j), \lim _{\omega \rightarrow \infty} H_{k}(\omega)=0$. Substituting into (1) gives

$$
H(0)=\frac{1}{2}, H(1)=\frac{1+2 j \omega}{1+(1+2 j \omega)^{3}}, \lim _{\omega \rightarrow \infty} H(\omega)=0
$$

Figure 5: Impulse reponse, step response, impulsetrain and response for Problem8
8. $\mathbf{1 0}$ points A continuous-time LTI system has the impulse response

$$
\forall t \in \text { Reals, } \quad h(t)= \begin{cases}1, & |t|<0.5 \\ 0, & \text { otherwise }\end{cases}
$$

(a) $\mathbf{2}$ points Sketch the impulse response, and mark carefully the relevant points on your plot.
(b) $\mathbf{2}$ points Is this system causal? Answer yes or no.
(c) $\mathbf{2}$ points Sketch the step response of this system, i.e. the response to the input signal $\operatorname{step}(t)=1, t \geq 0$ and $=0, t<0$?
(d) $\mathbf{2}$ points Consider the input signal impulsetrain, where

$$
\forall t \in \text { Reals, } \quad \text { impulsetrain }(t)=\sum_{k=-\infty}^{\infty} \delta(t-2 k) .
$$

Sketch impulsetrain.
(e) $\mathbf{2}$ points Sketch the response of the system to impulsetrain.
(a) The impulse response h is shown in Figure 5
(b) The system is NOT causal.
(c) The step response s is the integral of the impulse response as shown.
(d) The impulse train is as shown.
(e) Its response is

$$
\forall t, y(t)=(h * \text { impulsetrain })(t)=\sum_{k=-\infty}^{\infty} h(t-2 k)
$$

