EECS20n, Solution to Midterm 1, 10/20/00

1. 10 points The function $x:$ Reals \rightarrow Reals given by

$$
\forall t \in \text { Reals } \quad x(t)=\sin (2 \pi \times 440 t)
$$

is a mathematical example of a signal in the signal space [Reals \rightarrow Reals]. Give mathematical examples of signals in the following signal spaces.
(a) (2 pts) $[$ Ints \rightarrow Reals $]$

$$
\forall n \in \text { Ints, } \quad x(n)=n
$$

(b) (2 pts) $\left[\right.$ Nats $_{0} \rightarrow$ EnglishWords $]$

$$
\forall n \in \text { Nats }_{0}, \quad x(n)=\text { the }
$$

(c) (2 pts) $\left[\right.$ Reals \rightarrow Reals $\left.^{2}\right]$

$$
\forall t \in \text { Reals, } \quad x(t)=(t, 2 t)
$$

(d) (2 pts) $[\{0,1, \cdots, 600\} \times\{0,1, \cdots, 400\} \rightarrow\{0,1, \cdots, 255\}]$

$$
\forall(m, n) \in\{0,1, \cdots, 600\} \times\{0,1, \cdots, 400\}, \quad x(m, n)=(m+n) \bmod 255
$$

(e) ($\mathbf{2} \mathbf{~ p t s}$) Give an example of a practical space of signals whose mathematical representation is $[\{0,1, \cdots, 600\} \times\{0,1, \cdots, 400\} \rightarrow\{0,1, \cdots, 255\}]$.
This is the appropriate signal space for images of size 600×400 pixels with an 8 -bit color map index.
2. 10 points The function $H:\left[\right.$ Reals $_{+} \rightarrow$ Reals $] \rightarrow\left[\right.$ Nats $_{0} \rightarrow$ Reals $]$ given by: $\forall x \in$ ${ }_{\left[\text {Reals }_{+}\right.} \rightarrow$ Reals $]$,

$$
\forall n \in \operatorname{Nats}_{0}, \quad H(x)(n)=x(10 n),
$$

is a mathematical example of a system with input signal space $\left[\right.$ Reals ${ }_{+} \rightarrow$ Reals $]$ and output signal space $\left[\mathrm{Nats}_{0} \rightarrow\right.$ Reals $]$. Give mathematical examples of systems whose
(a) $\mathbf{5} \mathbf{p t s}$ input and output signal spaces both are $\left[\right.$ Nats $_{0} \rightarrow$ Bin $]$.

The simplest example is the identity system:

$$
\forall x, \forall n, \quad H(x)(n)=x(n) .
$$

(b) $\mathbf{5} \mathbf{p t s}$ input signal space is $\left[\right.$ Nats $_{0} \rightarrow$ Reals $]$ and output signal space is $\left[\right.$ Nats $\left._{0} \rightarrow\{0,1\}\right]$. A simple example is a system which converts negative values to 0 and positive values to 1 :

$$
\forall x, \forall n, \quad H(x)(n)= \begin{cases}0, & \text { if } x(n) \leq 0 \\ 1, & \text { if } x(n)>0\end{cases}
$$

(c) $\mathbf{5} \mathbf{p t s}$ input signal space is $[$ Ints \rightarrow Reals $]$ and output signal space is $[$ Reals \rightarrow Reals $]$. A simple example is a "zero-order" hold:

$$
\forall x, \forall t \in \text { Reals, } \quad H(x)(t)=x(n), \text { where } n=\lfloor t\rfloor .
$$

Figure 1: Machine for problem 3b
3. $\mathbf{1 0}$ points A state machine has Inputs $=$ Outputs $=\{0,1\}$.
(a) $\mathbf{3} \mathbf{p t s W h a t}$ is the space of input signals and the space of output signals of this state machine?

$$
\text { InputSignals }=\text { OutputSignals }=\left[\text { Nats }_{0} \rightarrow\{0,1\}\right] .
$$

(b) $\mathbf{5}$ pts Construct a deterministic machine whose input-output function H is given by (letting x denote the input signal and $y=H(x)$ denote the output signal): $\forall n \geq 0$,

$$
y(n)= \begin{cases}0, & \text { if } n=0,1 \\ x(n-2), & \text { if } n \geq 2\end{cases}
$$

This is a delay- 2 machine. The state must remember the two previous inputs. So there are 4 states denoted $i j$ where i is the input two steps before and j is the previous input. The machine is shown in figure 1. initialState $=00$ since the first two ouputs are 0 .
(c) $\mathbf{2} \mathbf{p t s}$ What is the output of your machine when the input is $0,1,0,1, \cdots$?

The output is $0,0,0,1, \cdots$

Figure 2: The machine for problem 4
4. 10 points Construct a non-deterministic state machine with Inputs $=$ Outputs $=\{T, F\}$ which for any input signal x has two possible output signals y, namely $y=x$, and $y=\bar{x}$ where $\forall n, \quad \bar{x}(n)=T$ or F accordingly as $x(n)=F$ or T.

The desired machine is shown in figure 2. In the state Y the output is the same as the input, in state N the output is the opposite of the input. From state init the machine transitions non-deterministically to N or Y. After the first input, the machine stays in Y forever or in N forever. So for every input sequence there are two possible output sequences.

Figure 3: Q simulates P

5. $\mathbf{1 0}$ points Let

$$
\left.\begin{array}{rl}
M & =\left(\text { States }_{M}, \text { Inputs }, \text { Outputs, }\right. \text { possibleUpdates } \\
M
\end{array}, \text { initialState }_{M}\right),
$$

be two non-deterministic state machines with the same set of inputs and outputs. Let $S \subset$ States $_{M} \times$ States $_{N}$.
(a) $\mathbf{4}$ pts Give the definition for S to be a simulation relation.
S is a simulation relation if:

- $\left(\right.$ initialState $_{M}$, initialState $\left._{N}\right) \in S$;
- $\forall\left(s_{M}, s_{N}\right) \in S, \forall x \in$ Inputs, whenever

$$
\left(s_{M}^{\prime}, y\right) \in \operatorname{possibleUpdates}_{M}\left(s_{M}, x\right)
$$

$$
\exists\left(s_{N}^{\prime}, y\right) \in \operatorname{possibleUpdates}_{N}\left(s_{N}, x\right) \text { such that }\left(s_{M}^{\prime}, s_{N}^{\prime}\right) \in S
$$

(b) $\mathbf{4}$ pts Find the simulation relation between P and Q shown in figure 3. Here Inputs $=$ $\{a\}$ and Outputs $=\{0,1\}$. (In the figure M is deterministic.)
The simulation relation is

$$
S=\{(A, V),(B, W),(C, W),(D, W)\}
$$

(c) $\mathbf{2}$ pts Are P and Q in figure 3 bisimilar? Answer yes or no. No.
6. $\mathbf{1 0}$ points Consider a multidimensional SISO system

$$
\begin{array}{ll}
s(n+1) & =A s(n)+b x(n) \\
y(n) & =c^{T} s(n)+d x(n)
\end{array}
$$

Suppose you don't know A, b, c, d or the initial state $s(0)$. Two input-output experiments are performed. In the first experiment, the input signal is x and the output signal is y; in the second, the input signal is v and the output signal is w. These signals are shown in figure 4 . In both cases the initial state $s(0)$ is the same.
(a) $\mathbf{4} \mathbf{p t s}$ What is the zero-state impulse response of the system?

We know that $\forall n \in$ Ints,

$$
\begin{align*}
y(n) & =c^{T} A^{n} s(0)+(h * x)(n) \tag{1}\\
w(n) & =c^{T} A^{n} s(0)+(h * v)(n) \tag{2}
\end{align*}
$$

Subtracting (2) from (1) gives

$$
(y-w)(n)=h *(x-v)(n) .
$$

But from the figure, $x-v=\delta$, the Kronecker delta, so $h *(x-v)=h * \delta=h$. So the zero-state impulse response is

$$
h(n)=(y-w)(n)= \begin{cases}0, & n<0 \tag{3}\\ 1, & n \geq 0\end{cases}
$$

(b) $\mathbf{3}$ pts What is the zero-state step response, i.e. the zero-state response of the system to the input signal x ?
The zero-state step response is

$$
(h * x)(n)=\sum_{i=0}^{n} h(i) x(n-i)=\sum_{i=0}^{n} 1= \begin{cases}0, & n<0 \tag{4}\\ n+1, & n \geq 0\end{cases}
$$

(c) $\mathbf{3} \mathbf{~ p t s}$ What is the zero-input response, i.e. the response when the input signal is identically zero ($s(0)$ is still the initial state).
The zero-input response is $c^{T} A^{n} s(0)$. From (1) and (4) we get for $n \geq 0$,

$$
c^{T} A^{n} s(0)=y(n)-(h * x)(n) \equiv 0
$$

(So in this case, $s(0)$ may be 0 .)

Figure 4: Results of two experiments
7. $\mathbf{1 0}$ points Answer the following True/False questions about a system

$$
H:[\text { Ints } \rightarrow \text { Reals }] \rightarrow[\text { Ints } \rightarrow \text { Reals }]
$$

In each case a correct answer yields +2 points, an incorrect answer yields -2 points, no answer yields 0 points.
(a) If

$$
\begin{equation*}
\forall x, \forall n, \quad(H(x))(n)=x(-n), \tag{5}
\end{equation*}
$$

H is linear. - TRUE
(b) The system (5) is time-invariant. - FALSE
(c) If

$$
\begin{equation*}
\forall x, \forall n, \quad(H(x))(n)=x^{2}(n)-x^{2}(n-1), \tag{6}
\end{equation*}
$$

H is linear. - FALSE
(d) The system (6) is time-invariant. - TRUE
(e) The system given by

$$
\forall x, \forall n, \quad(H(x))(n)=0.5 x(n)+0.2 x(n-3),
$$

is linear and time-invariant. - TRUE
8. $\mathbf{1 0}$ points Construct a linear time-invariant system of the form,

$$
\begin{array}{ll}
s(n+1) & =A s(n)+b x(n) \\
y(n) & =c^{T} s(n)+d x(n),
\end{array}
$$

whose zero-state impulse response h is given by: $h(0)=3, h(1)=-2$, and $h(n)=0$, otherwise.

The zero-state response is $y(n)=h(1) x(n-1)+h(0) x(n)$, so the state only needs to remember the previous input, i.e. we only need a 1 -dimensional state $s(n)=x(n-1)$. The required system is:

$$
\begin{aligned}
s(n+1) & =0 s(n)+1 \cdot x(n) \\
y(n) & =-2 s(n)+3 \cdot x(n)
\end{aligned}
$$

So $A=0, b=1, c=-2, d=3$.

