EECS20n, Midterm 1, 10/20/00

Please print your name and your TA's name here:

Last Name \qquad First \qquad TA's name \qquad

Problem 1:
Problem 2:
Problem 3:
Problem 4:
Problem 5:
Problem 6:
Problem 7:
Problem 8:
Total:

Read the questions carefully before you answer. Good luck.

1. $\mathbf{1 0}$ points The function $x:$ Reals \rightarrow Reals given by

$$
\forall t \in \text { Reals } \quad x(t)=\sin (2 \pi \times 440 t)
$$

is a mathematical example of a signal in the signal space [Reals \rightarrow Reals].
Give a mathematical example of a signal x in each of the following signal spaces.
(a) $[$ Ints \rightarrow Reals $]$
(b) $\left[\right.$ Nats $_{0} \rightarrow$ EnglishWords $]$
(c) $\left[\right.$ Reals \rightarrow Reals $\left.{ }^{2}\right]$
(d) $[\{0,1, \cdots, 600\} \times\{0,1, \cdots, 400\} \rightarrow\{0,1, \cdots, 255\}]$
(e) Give an example of a practical space of signals whose mathematical representation is $[\{0,1, \cdots, 600\} \times\{0,1, \cdots, 400\} \rightarrow\{0,1, \cdots, 255\}]$.
2. 10 points The function $H:\left[\right.$ Reals $_{+} \rightarrow$ Reals $] \rightarrow\left[\right.$ Nats $_{0} \rightarrow$ Reals $]$ given by: $\forall x \in$ $\left[\right.$ Reals $_{+} \rightarrow$ Reals $]$,

$$
\forall n \in \text { Nats }_{0}, \quad H(x)(n)=x(10 n),
$$

is a mathematical example of a system with input signal space $\left[\right.$ Reals $_{+} \rightarrow$ Reals] and output signal space $\left[\mathrm{Nats}_{0} \rightarrow\right.$ Reals $]$. Give a mathematical example of a system H whose
(a) input and output signal spaces both are $\left[\right.$ Nats $_{50} \rightarrow$ Bin $]$.
(b) input signal space is $\left[\right.$ Nats $_{0} \rightarrow$ Reals $]$ and output signal space is $\left[\right.$ Nats $\left._{0} \rightarrow\{0,1\}\right]$.
(c) input signal space is [Ints \rightarrow Reals $]$ and output signal space is $[$ Reals \rightarrow Reals $]$.
3. 10 points A state machine has Inputs $=$ Outputs $=\{0,1\}$.
(a) What is the space of input signals and the space of output signals of this state machine?
(b) Construct a deterministic machine whose input-output function H is given by (letting x denote the input signal and $y=H(x)$ denote the output signal): $\forall n \geq 0$,

$$
y(n)= \begin{cases}0, & \text { if } n=0,1 \\ x(n-2), & \text { if } n \geq 2\end{cases}
$$

(c) What is the output of your machine when the input is $0,1,0,1, \cdots$?
4. 10 points Construct a non-deterministic state machine with Inputs $=$ Outputs $=\{T, F\}$ which for any input signal x has two possible output signals y, namely $y=x$, and $y=\bar{x}$ where $\forall n, \quad \bar{x}(n)=T$ or F accordingly as $x(n)=F$ or T.

Figure 1: Q simulates P

5. $\mathbf{1 0}$ points Let

$$
\left.\begin{array}{rl}
M & =\left(\text { States }_{M}, \text { Inputs }, \text { Outputs, }\right. \text { possibleUpdates } \\
M
\end{array}, \text { initialState }_{M}\right),
$$

be two non-deterministic state machines with the same set of inputs and outputs. Let $S \subset$ States $_{M} \times$ States $_{N}$.
(a) Give the definition for S to be a simulation relation.
(b) Find the simulation relation between P and Q shown in figure 1. Here Inputs $=\{a\}$ and Outputs $=\{0,1\}$. (In the figure P is deterministic.)
(c) Are P and Q in figure 1 bisimilar? Answer yes or no.

Figure 2: Results of two experiments
6. 10 points Consider a multidimensional SISO system

$$
\begin{array}{ll}
s(n+1) & =A s(n)+b x(n) \\
y(n) & =c^{T} s(n)+d x(n)
\end{array}
$$

Suppose you don't know A, b, c, d or the initial state $s(0)$. Two input-output experiments are performed. In the first experiment, the input signal is x and the output signal is y; in the second, the input signal is v and the output signal is w. These signals are shown in figure 2 . Mathematically, they are:

$$
\begin{array}{r}
x(n)=1, n \geq 0,=0, n<0 ; y(n)=n+1, n \geq 0,=0, n<0 \\
v(n)=1, n \geq 1,=0, n<1 ; w(n)=n, n \geq 0,=0, n<0 .
\end{array}
$$

In both cases the initial state $s(0)$ is the same.
(a) What is the zero-state impulse response of the system?
(b) What is the zero-state step response, i.e. the zero-state response of the system to the input signal x ?
(c) What is the zero-input response, i.e. the response when the input signal is identically zero $(s(0)$ is still the initial state).
7. 10 points Answer the following True/False questions about a system

$$
H:[\text { Ints } \rightarrow \text { Reals }] \rightarrow[\text { Ints } \rightarrow \text { Reals }]
$$

In each case a correct answer yields +2 points, an incorrect answer yields -2 points, no answer yields 0 points.
(a) If

$$
\begin{equation*}
\forall x, \forall n, \quad(H(x))(n)=x(-n) \tag{1}
\end{equation*}
$$

H is linear.
(b) The system (1) is time-invariant.
(c) If

$$
\begin{equation*}
\forall x, \forall n, \quad(H(x))(n)=x^{2}(n)-x^{2}(n-1) \tag{2}
\end{equation*}
$$

H is linear.
(d) The system (2) is time-invariant.
(e) The system given by

$$
\forall x, \forall n, \quad(H(x))(n)=0.5 x(n)+0.2 x(n-3)
$$

is linear and time-invariant.
8. $\mathbf{1 0}$ points Construct a linear time-invariant system of the form,

$$
\begin{array}{ll}
s(n+1) & =A s(n)+b x(n) \\
y(n) & =c^{T} s(n)+d x(n),
\end{array}
$$

whose zero-state impulse response h is given by: $h(0)=3, h(1)=-2$, and $h(n)=0$, otherwise.

