Solutions for Midterm \#1-EECS 145M Spring 1998

1a

1b

1 The program outputs a one to the digital output port, which makes "take data" high
2 The program starts a loop that continuously reads the 16 bits of data and exits when the "output data available" line goes high.
3 The temperature sensor detects a one on "take data", senses the temperature, converts to into a 12-bit number
4 The temperature sensor asserts the 12-bit number on the 12 output lines
5 The temperature sensor makes the "output data available" line high
6 The program detects the "output data available" signal, and exits the loop
7 The program masks the 12-bit number from the 16 bit data
8 The program makes "take data" low
9 The sensor makes "output data available" low
[4 points off if the computer never reads "output data available"]
[2 points off if computer makes "take data" low before reading data]

1c

Take data

Temperature sensed and converted

Data valid

No	Yes	No

Data available

Computer reads data

2b

1 The program outputs a word to the digital output port that has a one on the "take data" bit, and ones on both output enable 1 and 2 to ignore the sensors.
2 The two temperature sensors simultaneously start producing a digital output
3 The program reads the digital input port in a loop waiting for "output data available n ", $n=1$ or 2 to go high (Note that these two signals do not need tri-state buffers and can be read directly to constantly monitor both temperature sensors)
4 If sensor n ($\mathrm{n}=1$ or 2) is ready first, it makes "output data available n " high
5 The program detects the "output data available n " signal and writes a word to the digital output port with one on the "take data" bit, a zero on the "output enable n" bit to select sensor n, and a one on the "output enable 3-n" bit to ignore sensor 3-n.
(Note: If $\mathrm{n}=1,3-\mathrm{n}=2$. If $\mathrm{n}=2,3-\mathrm{n}=1$.)
6 The program reads the input port for the sensor n data
7 The program masks the data to produce the 12-bit value from temperature sensor n
8 The program continues to read the digital input port in a loop waiting for the "output data available 3-n" bit to go high
9 When sensor 3-n is ready, it brings "output data available 3-n" high
10 The program detects the "output data available 3-n" and writes a word to the digital output port that has a one on the "take data" bit, a one on the "output enable n" bit to ignore sensor n , and a zero on the "output enable 3-n" bit to select sensor 3-n.
11 The program reads the input port for the sensor n data
12 The program masks the data to produce the 12-bit value from temperature sensor n
13 The program writes a word to the digital output port that brings "take data" low [4 points off if the computer does not read the "output data available" signals [4 points off if the computer does not selectively enable the two tri-states before reading data]

2c

[2 points off if data valid or data read process not shown (data lines are signals!!)] [2 points off if output enable lines not shown]

3a

$$
\begin{aligned}
& G=R_{1} / R_{2} \quad \sigma_{G}^{2}=\left(\frac{\partial G}{\partial R_{1}}\right)^{2} \sigma_{R_{1}}^{2}+\left(\frac{\partial G}{\partial R_{2}}\right)^{2} \sigma_{R_{2}}^{2}=\left(\frac{1}{R_{2}}\right)^{2} \sigma_{R_{1}}^{2}+\left(\frac{-R_{1}}{R_{2}^{2}}\right)^{2} \sigma_{R_{2}}^{2} \\
& \frac{\sigma_{G}^{2}}{G^{2}}=\left(\frac{R_{2}}{R_{1}}\right)^{2} \frac{\sigma_{R_{1}}^{2}}{R_{2}^{2}}+\left(\frac{R_{2}}{R_{1}}\right)^{2}\left(\frac{R_{1}}{R_{2}^{2}}\right)^{2} \sigma_{R_{2}}^{2}=\frac{\sigma_{R_{1}}^{2}}{R_{1}^{2}}+\frac{\sigma_{R_{2}}^{2}}{R_{2}^{2}}=(0.01)^{2}+(0.01)^{2}=0.0002
\end{aligned}
$$

$$
\frac{\sigma_{G}}{G}=\sqrt{0.0002}=0.01414
$$

Midterm \#1 class statistics:

Problem	max	average	rms
1	30	28.2	2.6
2	50	44.9	6.8
3	20	16.9	3.5
total	100	90.0	10.6

Grade distribution:

Range	number	approximate letter grade
$61-65$	1	C
$66-70$	0	$\mathrm{C}+$
$71-75$	0	$\mathrm{~B}-$
$76-80$	0	B
$81-85$	3	$\mathrm{~B}+$
$86-90$	3	A
$91-95$	0	A
$96-100$	7	$\mathrm{~A}+$

