\qquad
UNIVERSITY OF CALIFORNIA
College of Engineering
Electrical Engineering and Computer Sciences Department
EECS 145M: Microcomputer Interfacing Laboratory
Spring Midterm \#2
Monday, April 21, 1997

- Closed book- calculators OK
- Many equations are listed at the back of the exam
- You must show your work to get full credit

PROBLEM 1 (50 points)

Design a computer controlled system for the automatic testing of 12-bit A/D converters.

You are provided with the following:

- A microcomputer equipped with a 16-bit parallel input port, and a 16-bit parallel output port.
- A 16 -bit D/A converter with ± 1 LSB absolute accuracy.

You may assume the following:

- The 16-bit parallel output port is in "transparent" mode. A 16-bit word A written to the output port using the command outport $(1, A)$ immediately appears on the output lines.
- The 16-bit parallel input port requires a low-to-high edge on a "strobe" input line for external data to be latched onto the 16 bit registers. The program can read these registers using the command $B=\operatorname{inport}(1)$.
- The parallel input port has an "input data available" line that can be asserted high or low by an external device and read by the program using the command $C=\operatorname{inport}(2)$.
- The parallel input port has an external "ready for input data" line that can be set high using the program command outport(2,1), and set low using outport(2,0).
- The A/D converter requires a "start conversion" low-to-high signal and after conversion provides a "data ready" low-to-high signal that goes low when "start conversion" goes low.
- The A/D reference voltages are $\mathrm{V}_{\text {ref }}{ }^{-}=0.0000 \mathrm{~V}$ and $\mathrm{V}_{\text {ref }}{ }^{+}=4.095 \mathrm{~V}$
- The D/A reference voltages are $\mathrm{V}_{\text {ref }}{ }^{-}=0.0000 \mathrm{~V}$ and $\mathrm{V}_{\text {ref }}{ }^{+}=4.096 \mathrm{~V}$

Name (Last, First)
1a. [25 points] Draw a block diagram of the major components, including the A / D circuit being tested. Show and label all essential components, data lines, and control lines.

1b. [10 points] How would you measure the maximum absolute accuracy error of the A / D ? (Explain the procedure in steps or with a flow diagram.)
\qquad
1c. [5 points] How would you measure the maximum linearity error?

1d. [5 points] How would you measure the maximum differential linearity error?

1e. [5 points] With what accuracy could this system measure the quantities in parts b., c., and d. in units of 1 LSB of the A / D ?

PROBLEM 2 (50 points)

Design a microcomputer-based system for using the FFT to analyze the harmonic content of musical instruments.

The design requirements are:

- The instruments have a fundamental frequency (first harmonic) ranging from 50 Hz to 2 kHz.
- The system must sample the waveform with an amplitude accuracy of $\pm 1 \%$ over all frequencies of interest.
- The system must compute harmonic magnitudes from the 1 st to the 15 th harmonic with an accuracy that is 0.2% of the largest harmonic. (You may assume that at and above the 15th harmonic, the magnitudes decrease with increasing frequency.)
- Neighboring Fourier coefficients correspond to frequencies differing by 0.5 Hz .

Name (Last, First)
2a. [10 points] How does your design avoid aliasing? Give details.

2b. [10 points] What is the minimum sampling frequency required?

2c. [5 points] What is the minimum time needed to take all the required samples?

2d. [5 points] What is the minimum number of samples required?

Name (Last, First)
2e. [5 points] Would a Hanning window be useful in your design? Explain your reasoning.

2f. [5 points] To what frequency does the first FFT coefficient H_{1} correspond?
$\mathbf{2 g}$. (10 points] For a musical instrument with a first harmonic frequency of 500 Hz , which FFT magnitudes would you expect to be non zero?

Equations, some of which you might find useful:

$G(a)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{1}{2}\left(\frac{a-\mu}{\sigma}\right)^{2}\right] \quad \mu \approx \bar{a}=\frac{1}{m} \sum_{i=1}^{m} a_{i}$
$\sigma_{a}^{2}=\operatorname{Var}(a)=\left(\frac{1}{m-1}\right) \sum_{i=1}^{m} R_{i}^{2}=\left(\frac{1}{m-1}\right) \sum_{i=1}^{m}\left(a_{i}-\bar{a}\right)^{2} \quad \operatorname{Var}(\bar{a})=\operatorname{Var}(a) / m$
$t=\frac{\Delta}{\sigma_{\Delta}}=\frac{\bar{a}-\bar{b}}{\sqrt{\sigma_{\bar{a}}^{2}+\sigma_{\bar{b}}^{2}}}=\frac{\bar{a}-\bar{b}}{\sqrt{\sigma_{a}^{2} / m_{a}+\sigma_{b}^{2} / m_{b}}} \quad \sigma_{f}^{2}=\left(\frac{\partial f}{\partial a_{1}}\right)^{2} \sigma_{a 1}^{2}+\left(\frac{\partial f}{\partial a_{2}}\right)^{2} \sigma_{a 2}^{2}+\cdots+\left(\frac{\partial f}{\partial a_{n}}\right)^{2} \sigma_{a n}^{2}$
$f=k(a+b) \quad \sigma_{f}^{2}=k^{2}\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right) \quad f=k a b \quad \sigma_{f}^{2} / f^{2}=\sigma_{a}^{2} / a^{2}+\sigma_{b}^{2} / b^{2}$

Name (Last, First)
$R_{i}=a+b n_{i}-V_{i} \quad V_{\mathrm{rms}}=\sqrt{\frac{1}{m} \sum R_{i}^{2}}$
$a=\frac{s t-r q}{m s-r^{2}} \quad$ and $\quad b=\frac{m q-r t}{m s-r^{2}} \quad$ where $\quad r=\sum n_{i} \quad s=\sum n_{i}^{2} \quad q=\sum n_{i} V_{i} \quad t=\sum V_{i}$
$V(n)=V_{\text {ref }}^{-}+n\left(\frac{V_{\text {ref }}^{+}-V_{\text {ref }}^{-}}{2^{N}}\right)=V_{\min }+n\left(\frac{V_{\text {max }}-V_{\text {min }}}{2^{N}-1}\right)$
$n=\left[\frac{V-V_{\text {ref }}^{-}}{\Delta V}+\frac{1}{2}\right]_{\text {INTEGER }} \quad V(n-1, n)=V_{\text {ref }}^{-}+(n-0.5) \Delta V \quad \Delta V=\frac{V_{\text {ref }}^{+}-V_{\text {ref }}^{-}}{2^{N}-1}$
$H(f)=\int_{-\infty}^{\infty} h(t) e^{-j 2 \pi f t} d t \quad e^{j \theta}=\cos \theta+j \sin \theta$
If $h(t)=\left\{\begin{array}{l}A \text { for }|t| \leq T_{0} / 2 \\ 0 \text { for }|t|>T_{0} / 2\end{array}\right.$, then $H(f)=A T_{0} \frac{\sin \left(\pi T_{0} f\right)}{\pi T_{0} f}$
If $h(t)=0$ for $t<0 ; \quad h(t)=A e^{-t / \tau}$ for $t \geq 0$, then $H(f)=A / \sqrt{1+4 \pi^{2} f^{2} \tau^{2}}$
$H_{n}=\sum_{k=0}^{M-1} h_{k} e^{-j 2 \pi n k / M} \quad h_{k}=\sum_{n=0}^{M-1} \frac{H_{n}}{M} e^{+j 2 \pi n k / M} \quad d B=20 \log _{10}$
$F_{n}=\left|H_{n}\right|=\sqrt{\operatorname{Re}\left(H_{n}\right)^{2}+\operatorname{Im}\left(H_{n}\right)^{2}} \quad \tan \phi_{n}=\operatorname{Im}\left(H_{n}\right) / \operatorname{Re}\left(H_{n}\right)$
For $h_{k}=\sum_{i=0}^{M-1} a_{i} \cos (2 \pi i k / M)+b_{i} \sin (2 \pi i k / M) \quad H_{0}=M a_{0} \quad H_{n}=(M / 2)\left(a_{n}-j b_{n}\right)$
$\mathrm{f}_{\text {max }}=\mathrm{f}_{\mathrm{S}} / 2 \quad \Delta \mathrm{t}=1 / \mathrm{f}_{\mathrm{s}} \quad \mathrm{S}=\mathrm{M} \Delta \mathrm{t} \quad \Delta \mathrm{f}=1 / \mathrm{S} \quad \mathrm{h}(\mathrm{t})=0.5[1.0-\cos (2 \pi \mathrm{t} / \mathrm{S})]$
$y_{i}=A_{1} x_{i-1}+A_{2} x_{i-2}+\ldots+A_{M} x_{i-M}+B_{1} y_{i-1}+\ldots+B_{N} y_{i-N}$
If $a(t)=\int_{-\infty}^{+\infty} b\left(t^{\prime}\right) c\left(t-t^{\prime}\right) d t^{\prime}=b(t) * c(t)$, then FFT(a) $=\mathrm{FFT}(\mathrm{b})$ multiplied by FFT(c)
$f_{\text {max }}=\frac{1}{2^{N+1} \pi T} \quad V(t)=V(0) e^{-t / R C}$
$\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|=\frac{1}{\sqrt{1+\left(f / f_{c}\right)^{2 n}}} \quad$ (see table below)

	0.999	0.99	0.9	0.707	0.01	0.001	0.0001
$f l f \mathrm{fc}(n=6)$	0.596	0.723	0.886	1.000	2.154	3.162	4.642
$f / f \mathrm{c}(n=8)$	0.678	0.784	0.913	1.000	1.778	2.371	3.162
$f / f \mathrm{cc}(n=10)$	0.733	0.823	0.930	1.000	1.585	1.995	2.512
$f / f \mathrm{cc}(n=12)$	0.772	0.850	0.941	1.000	1.468	1.778	2.154

$N=$	8	9	10	11	12	13	14	15	16
$2^{N}=$	256	512	1,024	2,048	4,096	8,192	16,384	32,768	65,536

