UNIVERSITY OF CALIFORNIA

College of Engineering Electrical Engineering and Computer Sciences Department

EECS 145M: Microcomputer Interfacing Laboratory

Spring Midterm #2 Monday, April 21, 1997

- Closed book- calculators OK
- Many equations are listed at the back of the exam
- You must show your work to get full credit

PROBLEM 1 (50 points)

Design a computer controlled system for the automatic testing of 12-bit A/D converters.

You are provided with the following:

- A microcomputer equipped with a 16-bit parallel input port, and a 16-bit parallel output port.
- A 16-bit D/A converter with ± 1 LSB absolute accuracy.

You may assume the following:

- The 16-bit parallel output port is in "transparent" mode. A 16-bit word A written to the output port using the command outport(1, A) immediately appears on the output lines.
- The 16-bit parallel input port requires a low-to-high edge on a "strobe" input line for external data to be latched onto the 16 bit registers. The program can read these registers using the command B = inport(1).
- The parallel input port has an "input data available" line that can be asserted high or low by an external device and read by the program using the command C = inport(2).
- The parallel input port has an external "ready for input data" line that can be set high using the program command outport(2,1), and set low using outport(2,0).
- The A/D converter requires a "start conversion" low-to-high signal and after conversion provides a "data ready" low-to-high signal that goes low when "start conversion" goes low.
- The A/D reference voltages are $V_{ref} = 0.0000$ V and $V_{ref} = 4.095$ V
- The D/A reference voltages are $V_{ref} = 0.0000$ V and $V_{ref} = 4.096$ V

Name (Last, First)

1a. [25 points] Draw a block diagram of the major components, including the A/D circuit being tested. Show and label *all* essential components, data lines, and control lines.

1b. [10 points] How would you measure the maximum absolute accuracy error of the A/D? (Explain the procedure in steps or with a flow diagram.)

1c. [5 points] How would you measure the maximum linearity error?

1d. [5 points] How would you measure the maximum differential linearity error?

1e. [5 points] With what accuracy could this system measure the quantities in parts b., c., and d. in units of 1 LSB of the A/D?

PROBLEM 2 (50 points)

Design a microcomputer-based system for using the FFT to analyze the harmonic content of musical instruments.

The design requirements are:

- The instruments have a fundamental frequency (first harmonic) ranging from 50 Hz to 2 kHz.
- The system must sample the waveform with an amplitude accuracy of $\pm 1\%$ over all frequencies of interest.
- The system must compute harmonic magnitudes from the 1st to the 15th harmonic with an accuracy that is 0.2% of the largest harmonic. (You may assume that at and above the 15th harmonic, the magnitudes decrease with increasing frequency.)
- Neighboring Fourier coefficients correspond to frequencies differing by 0.5 Hz.

2a. [10 points] How does your design avoid aliasing? Give details.

2b. [10 points] What is the minimum sampling frequency required?

2c. [5 points] What is the minimum time needed to take all the required samples?

2d. [5 points] What is the minimum number of samples required?

2e. [5 points] Would a Hanning window be useful in your design? Explain your reasoning.

- **2f.** [5 points] To what frequency does the first FFT coefficient H_1 correspond?
- **2g.** (10 points] For a musical instrument with a first harmonic frequency of 500 Hz, which FFT magnitudes would you expect to be non zero?

Equations, some of which you might find useful:

$$G(a) = \frac{1}{\sqrt{2}} \exp \left[-\frac{1}{2} \frac{a - \mu}{2}\right]^2 \quad \mu \quad \bar{a} = \frac{1}{m} \frac{m}{i=1} a_i$$

$$\stackrel{2}{a} = \operatorname{Var}(a) = \frac{1}{m-1} \frac{m}{i=1} R_i^2 = \frac{1}{m-1} \frac{m}{i=1} (a_i - \bar{a})^2 \quad \operatorname{Var}(\bar{a}) = \operatorname{Var}(a) / m$$

$$t = \frac{\bar{a} - \bar{b}}{\sqrt{\frac{2}{a} + \frac{2}{b}}} = \frac{\bar{a} - \bar{b}}{\sqrt{\frac{2}{a} / m_a + \frac{2}{b} / m_b}} \quad \stackrel{2}{f} = \frac{f}{a_1} \left[-\frac{f}{a_2}\right]^2 \frac{2}{a_1} + \frac{f}{a_2} \left[-\frac{f}{a_2} + \frac{f}{a_2}\right]^2 \frac{2}{a_2} + \dots + \frac{f}{a_n} \left[-\frac{f}{a_n}\right]^2 \frac{2}{a_n}$$

$$f = k(a + b) \quad \stackrel{2}{f} = k^2 \left(-\frac{2}{a} + \frac{2}{b}\right) \quad f = kab \quad \frac{2}{f} / f^2 = \frac{2}{a} / a^2 + \frac{2}{b} / b^2$$

Name (Last, First) $R_i = a + bn_i - V_i \quad V_{\rm rms} = \sqrt{\frac{1}{m} - R_i^2}$ $a = \frac{st - rq}{ms - r^2}$ and $b = \frac{mq - rt}{ms - r^2}$ where $r = n_i$ $s = n_i^2$ $q = n_i V_i$ $t = V_i$ $V(n) = V_{\text{ref}}^{-} + n \frac{V_{\text{ref}}^{+} - V_{\text{ref}}^{-}}{2^{N}} = V_{\text{min}} + n \frac{V_{\text{max}} - V_{\text{min}}}{2^{N} - 1}$ $n = \frac{V - V_{\text{ref}}}{V} + \frac{1}{2} \sum_{INTEGER} V(n - 1, n) = V_{\text{ref}}^{-} + (n - 0.5) \quad V = \frac{V_{\text{ref}}^{+} - V_{\text{ref}}^{-}}{2^{N} - 1}$ $H(f) = h(t)e^{-j2 ft} dt \qquad e^j = \cos + j \sin \theta$ If $h(t) = \frac{A \text{ for } |t| T_0/2}{0 \text{ for } |t| > T_0/2}$, then $H(f) = AT_0 \frac{\sin(T_0 f)}{T_0 f}$ If h(t) = 0 for t < 0; $h(t) = Ae^{-t/t}$ for t = 0, then $H(f) = A/\sqrt{1 + 4^2 f^2}$ $H_n = \frac{M-1}{k=0} h_k e^{-j2} \frac{nk}{M} \quad h_k = \frac{M-1}{n-0} \frac{H_n}{M} e^{+j2} \frac{nk}{M}$ $dB = 20 \log_{10}$ $F_n = |H_n| = \sqrt{\text{Re}(H_n)^2 + \text{Im}(H_n)^2} \quad \tan_n = \text{Im}(H_n)/\text{Re}(H_n)$ For $h_k = \prod_{i=0}^{M-1} a_i \cos(2 ik/M) + b_i \sin(2 ik/M)$ $H_0 = Ma_0$ $H_n = (M/2)(a_n - jb_n)$ $f_{max} = f_s/2$ $t = 1/f_s$ S = M t f = 1/S h(t) = 0.5 [1.0 - cos(2 t/S)] $y_i = A_1 x_{i-1} + A_2 x_{i-2} + \dots + A_M x_{i-M} + B_1 y_{i-1} + \dots + B_N y_{i-N}$ If a(t) = b(t')c(t-t')dt' = b(t) c(t), then FFT(a) = FFT(b) multiplied by FFT(c) $f_{\text{max}} = \frac{1}{2^{N+1} T}$ $V(t) = V(0) e^{-t/RC}$ $\left|\frac{V_{\text{out}}}{V_{\text{in}}}\right| = \frac{1}{\sqrt{1 + (f/f)^{2n}}}$ (see table below)

	0.999	0.99	0.9	0.707	0.01	0.001	0.0001
f/fc ($n=6$)	0.596	0.723	0.886	1.000	2.154	3.162	4.642
f/fc ($n=8$)	0.678	0.784	0.913	1.000	1.778	2.371	3.162
f/fc ($n=10$)	0.733	0.823	0.930	1.000	1.585	1.995	2.512
f/fc ($n=12$)	0.772	0.850	0.941	1.000	1.468	1.778	2.154
	-						

<i>N</i> =	8	9	10	11	12	13	14	15	16
$2^{N} =$	256	512	1,024	2,048	4,096	8,192	16,384	32,768	65,536