Name	ne (Last, First)	Student ID number
	UNIVERSITY OF	CALIFORNIA
	College of En Electrical Engineering and Con	ngineering
	EECS 145M: Microcompute	er Interfacing Laboratory
	Spring Midterm #2 (Closed book- equa Full credit can only be given Wednesday, Ap	tion sheet provided- calculators OK) n if you show your work.
Yo	OBLEM 1 (54 points) You have designed and built a computer system as the following characteristics: Sampling frequency = 2 ¹⁸ Hz = 262,144 Hz Number of samples = 2 ¹⁶ = 65,536 Low-pass Butterworth anti-aliasing filter of Hanning (raised cosine) window	
Answ	swer the following questions: (3 points) For what frequency range does the (Hint: Use the Butterworth gain table on the	
1.2	(3 points) For what frequency range does th	e anti-aliasing filter have gain <0.01?

(2 points) How long does it take to acquire the samples?

1.3

Name	e (Last, First)S	Student ID number
1.4	(3 points) To what frequencies do the FFT coeffic	cients H_0 and H_1 correspond?
1.5	(4 points) What is the FFT coefficient with the frequency does it correspond?	ne highest frequency index and to what
1.6	(4 points) What is the FFT coefficient that corresis that frequency?	sponds to the highest frequency and what
1.7	(6 points) You sample a 4,000 Hz sinewave with coefficients should be non-zero?	the system and take the FFT. What FFT

Name	(Last, First)	Student ID number
1.8	(6 points) You sample a 4,000 Hz symmetric FFT. What FFT coefficients should be non-zero	
1.9	(6 points) You sample a 4,002 Hz <i>sinewave</i> wi coefficients should be non-zero?	th the system and take the FFT. What FFT
1.10	(6 points) You sample two sinewave signals another at a nearby frequency and 10 times so frequency of the second signal approach 4,6 coefficients as a separate peak?	maller in magnitude. How closely can the

Name (Last, First)	Student ID number

1.11 (8 points) You sample a sinewave of frequency $2^{18} - 84,000 \text{ Hz} = 178,144 \text{ Hz}$ and take the FFT. What FFT coefficients should be non-zero? How does the magnitude of the largest FFT coefficient compare with that you would get if you sampled an 84,000 Hz sinewave?

1.12 (3 points) How would you change the system to reduce the closeness in problem 1.10 by a factor of two?

Nar	me (Last, First)	_ Student ID number
You app way shift and •	PROBLEM 2 (46 points) You have been asked to help design a Doppler ultrasound system for measuring the speed of approaching vehicles on a highway. The system sends a continuous tone of 100 kHz sound waves in a well-defined direction and there is a receiver alongside that receives the Doppler-shifted echo. Your part in the project is to design the sampling and signal processing hardware and software, starting from the echo receiver. The Doppler-shifted frequency is given by $f' = f/[1 - v/c]$, where v is the speed of the approaching vehicle and c is the speed of sound in air (assume 300 m/s). To simplify and speed your calculations, use the approximation $f' \approx f[1 + v/c]$. Assume that the echo receiver signal is the sum of a 0.1 volt p-p echo from the vehicle plus a 100 kHz 10V p-p echo from stationary objects. The echo circuit has wide-band amplification with white noise, so you decide to use a low-pass Butterworth anti-aliasing filter that you need to design. You do not use a windowing function (like the raised cosine) Your system must be able to determine the speed of an approaching vehicle between 3 m/s and 60 m/s to an accuracy of ± 0.3 m/s.	
2.2	(5 points) What is the minimum length of time t detect a change in speed of 0.3 m/s?	hat you need to sample to sample to clearly
2.3	(5 points) Even though you do not use a window spectral leakage from the ≈10 volt p-p 100 kHz p	

Name (Last, First) St	Student ID number

2.4 (5 points) Design an n = 8 order Butterworth low-pass filter (i.e. determine the corner frequency f_c) that has a gain of 0.9 at the maximum signal frequency f_1 (vehicle speed 60 m/s)

2.5 (6 points) If the gain $G_2 < 0.01$ at all frequencies $f > f_2$ that could alias to frequencies $< f_1$, what are f_2 and the minimum sampling frequency f_s ?

- **2.6** (5 points) What is the minimum number of samples that you will need to take for each measurement of vehicle speed?
- 2.7 (15 points) Sketch all FFT magnitudes vs. frequency index for a vehicle speed of 30 m/s. You will need to use a vertical axis labeled in powers of ten. Provide an additional label for the horizontal axis in Hz. Assume that at each frequency the white noise is 10% of the Fourier magnitude of the echo signal. (Do not worry if the number of samples is not a power of two).