
1a Successive approximation A/D

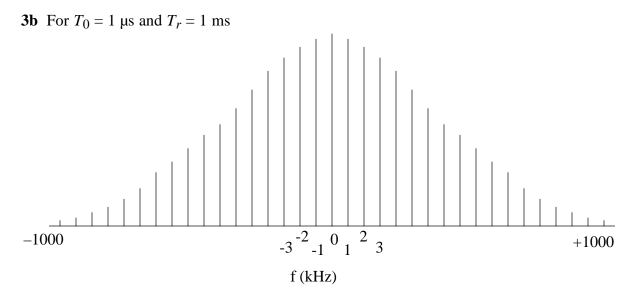
1 b

- 1 set all bits to zero
- 2 set index i = N (MSB)
- 3 set bit i to one
- 4 send bit pattern to D/A
- 5 if analog input is less than D/A output, set bit i to zero
- 6 i = i -1
- 7 return to step 3 (quit if i = zero)

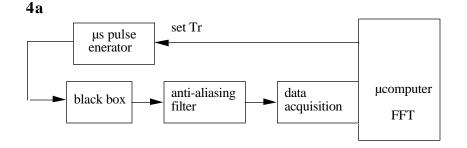
2b

- 1 Analog input is sent to the (+) inputs of 2^{N} -1 comparators
- 2 (-) inputs of comparators connected to points between resistors connected in series
- 3 comparator outputs are sent to a circuit that determines the *N*-bit address of the highest comparator whose output is one
- 4 the *N*-bit address is the converted output

3a


An infinite periodic series of square pulses of width T_0 and period T_r is the convolution of the square wave h(t) with an infinite periodic series of delta functions:

$$g(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_r)$$


By the Fourier convolution theorem, the Fourier transform of h(t) convolved with g(t) is the simple product of the individual Fourier transforms H(f) and G(f):

$$G(f)H(f) = \sum_{n=-\infty}^{\infty} \frac{\sin(\pi T_0 f)}{\pi T_0 f} f_r \,\delta(f - nf_r) \qquad f_r = 1/T_r$$

This Fourier transform has the envelope of H(f) but is non-zero only at integer multiples of the repeat frequency f_r .

The Fourier transform is non-zero only at integer multiples of the repeat frequency $f_r = 1$ kHz

4b Want filter gain $G_1 > 0.999$ for frequencies $f_1 < 100$ kHz. From equation sheet, an 8-pole filter has a gain of 0.999 at f/fc = 0.678Solve for $f_c = f_1/0.678 = 147.5$ kHz

Want filter gain $G_2 < 0.01$ at the lowest frequency f_2 that could alias below $f_1 = 100$ kHz From equation sheet, an 8-pole filter has a gain of 0.01 at $f/f_c = 1.778$ Solve for $f_2 = 1.778 f_c = 262$ kHz

 f_2 aliases to f_1 when $f_s = f_1 + f_2$ to avoid aliasing we want $f_s > 100$ kHz + 262 kHz = 362 kHz

[the requirement that $f_s > 2 f_2 = 524$ kHz is more conservative than necessary but was accepted with no deduction]

4c Since we only need Fourier magnitudes at multiples of 100 Hz, the series of 1 μ s pulses needs to contain harmonic frequencies only at multiples of 100 Hz. By choosing a pulse repetition period Tr = 0.01 seconds, the series of 1 μ s pulses contains a fundamental frequency of 100 Hz and higher harmonic multiples of 100 Hz.

Since the number of samples *M* is equal to the number of Fourier magnitudes, the lowest *M* is achieved when the frequency spacing is $\Delta f = 100$ Hz. Since $S = 1/\Delta f$, S = 0.01 seconds. By increasing the sampling frequency in part 4b from $f_s = 362$ kHz to $f_s = 409.6$ kHz, we will have M = 4096 samples (and Fourier magnitudes) in 0.01 seconds.

4d H_n is the Fourier coefficient at the frequency $f_n = n \ 100 \text{ Hz}$

$$\left|\frac{V_{\text{out}}}{V_{\text{in}}}\right| = \frac{1}{H_0} \frac{\sqrt{\left[\operatorname{Re}(H_n)\right]^2 + \left[\operatorname{Im}(H_n)\right]^2}}{\sin(\pi\mu s f_n) / (\pi\mu s f_n)}$$

- Note 1: The gain is computed as the output amplitude (Fourier magnitude) divided by the input magnitude of the 1 μ s pulses at that frequency. The response of the Butterworth antialiasing filter does not enter because its gain is >0.999 below 100 kHz.
- Note 2: The gain is normalized to 1 at zero frequency

Problem	max	average	rms	
1	20	15.1	5.2	
2	20	15.3	5.3	
3	20	14.4	5.6	
4	40	26.8	6.1	
total	100	71.5	14.4	

Midterm #2 class statistics:

Grade distribution:

Range	number	<i>approximate</i> letter grade
46-50	2	C–
51-55	0	
56-60	2	C+
61-65	1	B-
66-70	2	В
71-75	2	B+
76-80	1	A–
81-85	2	А
86-90	2	А
91-95	1	A+
96-100	0	

6 A's; 5 B's; 4 C's