Solutions for Midterm \#2 - EECS 145M Spring 2001
1a Successive approximation A/D

1b
1 set all bits to zero
2 set index $\mathrm{i}=\mathrm{N}(\mathrm{MSB})$
3 set bit i to one
4 send bit pattern to D/A
5 if analog input is less than D/A output, set bit i to zero
$6 \quad \mathrm{i}=\mathrm{i}-1$
7 return to step 3 (quit if $\mathrm{i}=$ zero)
2a Flash A/D

2b

1 Analog input is sent to the (+) inputs of 2^{N-1} comparators
$2(-)$ inputs of comparators connected to points between resistors connected in series
3 comparator outputs are sent to a circuit that determines the N-bit address of the highest comparator whose output is one
4 the N-bit address is the converted output

3a

An infinite periodic series of square pulses of width T_{0} and period T_{r} is the convolution of the square wave $h(t)$ with an infinite periodic series of delta functions:
$g(t)=\sum_{k=-\infty}^{\infty} \delta\left(t-k T_{r}\right)$
By the Fourier convolution theorem, the Fourier transform of $h(t)$ convolved with $g(t)$ is the simple product of the individual Fourier transforms $H(f)$ and $G(f)$:

$$
G(f) H(f)=\sum_{n=-\infty}^{\infty} \frac{\sin \left(\pi T_{0} f\right)}{\pi T_{0} f} f_{r} \delta\left(f-n f_{r}\right) \quad f_{r}=1 / T_{r}
$$

This Fourier transform has the envelope of $H(f)$ but is non-zero only at integer multiples of the repeat frequency f_{r}.

3b For $T_{0}=1 \mu \mathrm{~s}$ and $T_{r}=1 \mathrm{~ms}$

The Fourier transform is non-zero only at integer multiples of the repeat frequency $f_{r}=1 \mathrm{kHz}$

4a

4b Want filter gain $\mathrm{G}_{1}>0.999$ for frequencies $f_{1}<100 \mathrm{kHz}$.
From equation sheet, an 8-pole filter has a gain of 0.999 at $f / f c=0.678$
Solve for $f_{c}=f_{1} / 0.678=147.5 \mathrm{kHz}$
Want filter gain $G_{2}<0.01$ at the lowest frequency f_{2} that could alias below $f_{1}=100 \mathrm{kHz}$
From equation sheet, an 8-pole filter has a gain of 0.01 at $f / f_{c}=1.778$
Solve for $f_{2}=1.778 f_{c}=262 \mathrm{kHz}$
f_{2} aliases to f_{1} when $f_{s}=f_{1}+f_{2}$
to avoid aliasing we want $f_{s}>100 \mathrm{kHz}+262 \mathrm{kHz}=362 \mathrm{kHz}$
[the requirement that $f_{s}>2 f_{2}=524 \mathrm{kHz}$ is more conservative than necessary but was accepted with no deduction]

4c Since we only need Fourier magnitudes at multiples of 100 Hz , the series of 1μ s pulses needs to contain harmonic frequencies only at multiples of 100 Hz . By choosing a pulse repetition period $\boldsymbol{T r}=\mathbf{0 . 0 1}$ seconds, the series of 1μ s pulses contains a fundamental frequency of 100 Hz and higher harmonic multiples of 100 Hz .

Since the number of samples M is equal to the number of Fourier magnitudes, the lowest M is achieved when the frequency spacing is $\Delta f=100 \mathrm{~Hz}$. Since $S=1 / \Delta f, S=0.01$ seconds. By increasing the sampling frequency in part 4 b from $f_{S}=362 \mathrm{kHz}$ to $\boldsymbol{f}_{\boldsymbol{s}}=409.6 \mathrm{kHz}$, we will have $\boldsymbol{M}=4096$ samples (and Fourier magnitudes) in 0.01 seconds.

4d H_{n} is the Fourier coefficient at the frequency $f_{n}=n 100 \mathrm{~Hz}$

$$
\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|=\frac{1}{H_{0}} \frac{\sqrt{\left[\operatorname{Re}\left(H_{n}\right)\right]^{2}+\left[\operatorname{Im}\left(H_{n}\right)\right]^{2}}}{\sin \left(\pi \mu s f_{n}\right) /\left(\pi \mu s f_{n}\right)}
$$

Note 1: The gain is computed as the output amplitude (Fourier magnitude) divided by the input magnitude of the $1 \mu \mathrm{~s}$ pulses at that frequency. The response of the Butterworth antialiasing filter does not enter because its gain is >0.999 below 100 kHz .
Note 2: The gain is normalized to 1 at zero frequency

Midterm \#2 class statistics:

Problem	max	average	rms
1	20	15.1	5.2
2	20	15.3	5.3
3	20	14.4	5.6
4	40	26.8	6.1
total	100	71.5	14.4

Grade distribution:

Range	number	approximate letter grade
$46-50$	2	$\mathrm{C}-$
$51-55$	0	
$56-60$	2	$\mathrm{C}+$
$61-65$	1	$\mathrm{~B}-$
$66-70$	2	B
$71-75$	2	$\mathrm{~B}+$
$76-80$	1	$\mathrm{~A}-$
$81-85$	2	A
$86-90$	2	A
$91-95$	1	$\mathrm{~A}+$
$96-100$	0	

6 A's; 5 B's; 4 C's

