EECS 145L Final Examination Solutions (Fall 1999)

UNIVERSITY OF CALIFORNIA, BERKELEY
College of Engineering, Electrical Engineering and Computer Sciences Department

1a The ideal op-amp has infinite differential gain while the ideal instrumentation amplifier has a fixed gain (set by external resistors) over a range of frequencies.
[1 point off for ideal op amp gain falling as $1 / \mathrm{f}$, which is a property of the realistic op-amp]
[2 points off for ideal instrumentation amplifer having infinite differential gain]
1b The incandescent lamp has thermally agitated electrons in a hot filament that emit black body radiation. (The lamp is hot and the color spectrum is broad.) The fluorescent lamp emits light when electrons excited to a higher energy level drop to a lower energy level. (The lamp is cool and the spectrum has emission lines.)
[3 points off if incandescent has no hot filament or thermally agitated eleectrons or black body radiation]
[2 points off if incandescent has a broad wavelength spectrum but no hot filament]
[3 points off if fluorescent excitation or energy levels not mentioned]
[2 points off if fluorescent emission is in discrete wavelenthgs but energy levels not mentioned]
1c The platinum resistance thermometer is a metal whose resistance increases approximately linearly with increasing temperature and the thermistor is a semiconductor whose resistance decreases exponentially with increasing temperature.
[2 points off for not mentioning increase vs. decreasing resistance with increasing temperature]
[2 points off for not mentioning metal vs. semivconductor difference]
2a In the Peltier Thermoelectric Heat Pump electrons pass through a series of n-type and p-type semiconductive elements. The "electron gas" is heated by compression when it is forced by an external power supply to enter the p-type material and cools by expansion when it enters the n-type material.
2b The Stepping Motor consists of a magnetic element surrounded by a series of coils. Current passing through the coils makes a series of magnetic wells. As current is switched among the coils, the position of the magnetic wells changesa and the magnetic element rotates
2c In the light emitting diode an electric potential drives electrons into the conduction band and the electrons produce light when they return to the ground state.

3a For maximum sensitivity at $30^{\circ} \mathrm{C}, \mathrm{R}_{3}=\mathrm{R}_{4}=10 \mathrm{k} \Omega$.
For $\mathrm{V}_{0}=0$ at $30^{\circ} \mathrm{C}, \mathrm{R}_{1}=10 \mathrm{k} \Omega . \quad \mathrm{V}_{\mathrm{b}}=0.1 \mathrm{~V}$
At $31{ }^{\circ} \mathrm{C}, \mathrm{V}_{+}=(0.1 \mathrm{~V})(10,000 \Omega) /(9,608+10,000 \Omega)=0.051000 \mathrm{~V}^{2} \mathrm{~V}_{-}=0.050000$

3b Gain $=\mathrm{V}_{0} /\left(\mathrm{V}_{+}-\mathrm{V}_{-}\right)=(1 \mathrm{~V}) /(0.00100 \mathrm{~V})=1000$, Bandwidth $=10^{6} \mathrm{~Hz} / 1000=1000 \mathrm{~Hz}$.
3c $\quad V_{\mathrm{rms}}=\sqrt{\Delta f\left(D_{1} G\right)^{2}}$ from the equation sheet.
$\mathrm{V}_{\mathrm{rms}}=\left(31.4 \mathrm{~Hz}^{1 / 2}\right)\left(1 \mu \mathrm{~V} \mathrm{~Hz}^{-1 / 2}\right)(1000)=31.4 \mathrm{mV}$
[2 points off for not mutiplying by the gain]
3d $\quad \mathrm{T}_{\mathrm{rms}}=\mathrm{V}_{\mathrm{rms}} /\left(\mathrm{dV}_{0} / \mathrm{dT}\right)=(31.4 \mathrm{mV}) /\left(1 \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)=0.0314^{\circ} \mathrm{C} \mathrm{rms}$
[2 points off for $30.0314{ }^{\circ} \mathrm{C}$]
3e A low-pass filter with f_{c} slighlty above 1 Hz will reduce the noise from 31.4 mV to 1 mV without reducing the signal
[3 points off if low-pass filter not used] [3 points off if f_{c} not given]
[6 points off for using a notch filter]
[4 points off for increasing the amplifier gain to reduce the bamdwidth- a gain of 10^{6} would be needed and this would cause saturation]
4a Green is reflected, so all other wavelgths are absorbed.
4b Fluorescent
4c Assuming 100% quantum efficiency, the power received by a $1 \mathrm{~cm}^{2}$ photodetector under full sunlight is $\left(10^{-4} \mathrm{~m}^{2}\right)\left(1000 \mathrm{~W} \mathrm{~m}^{-2}\right)=0.1 \mathrm{~W}$.
0.1 W of 2 eV photons produces 50 mA of closed-loop photovoltaic current.

Open-circuit conditions produces 0 mA and $\approx 0.6 \mathrm{~V}$ max (voltage saturation).
Load resistor must be $<0.6 \mathrm{~V} / 0.05 \mathrm{~A}=12 \Omega$ or photodiode will saturate.
A 10Ω load resistor will produce 0.5 V when the photodiode receives full sunlight. This determines the set point voltage.

EECS 145L Final Examination Solutions (Fall 1999)

[2 points off if load resistor is $>12 \Omega$]
[2 points off for omitting the factor of 2 eV in converting from watts to amps]
[3 for omitting a controller- without rectification both positive and negative error signals will generate more artificial light. An integrator is even better- a positive error signal will increase the lamp drive and a negative error signal will reduce the lamp drive.]

4d

5a Sensor: thermistor Actuator: thermoelectric heat pump
5b Sensor: thermocouple of platinum resistance thermometer Actuator: resistive heater
Another correct answer is a bimetallic switch, which acts both as a sensor and an actuator
[3 points off for using a thermoelectric heat pump as an actuator- it is a semiconductor that would be destroyed at $500^{\circ} \mathrm{C}$]
5c Sensor: piezoelectric crystal or embedded piezoresistors in a silicon disk
Actuator: motor plus compresssor pump or solinoid plus piston
5d Sensor: Circular resistor or digital encoder Actuator: stepping motor

145LFinal Examination score distribution:

$101-110$	$111-120$	$121-130$		
$131-140$	1	$141-150$	$151-160$	
$161-170$	2	$171-180$	3	$181-190$

undergraduate average $=179.6$
graduate average $=188.0$

145L Course Grade Distribution

Grade	Undergraduate Scores	Graduate Scores
$\mathbf{A +}$	959	
A	$929,934,949,957$	929,950
A-		
$\mathbf{B}+$	$901,901,904,906$	
\mathbf{B}	$872,889,890$	
$\mathbf{B}-$	823,845	
C+		1000
C	716	939.5

