Midterm \#1 Solutions - EECS 145L Fall 2010

1.1
$V_{0}=(k / f)\left(V_{1}-V_{2}\right) \quad V_{2}=V_{0} R_{1} /\left(R_{1}+R_{2}\right)$
$V_{0}=(k / f) V_{1}-(k / f) V_{0} R_{1} /\left(R_{1}+R_{2}\right)$
$V_{0}\left[1+(k / f) R_{1} /\left(R_{1}+R_{2}\right)\right]=V_{1}(k / f)$
$G=V_{0} / V_{1}=\frac{k / f}{1+(k / f) R_{1} /\left(R_{1}+R_{2}\right)}=\frac{1}{(f / k)+R_{1} /\left(R_{1}+R_{2}\right)}=\frac{R_{1}+R_{2}}{(f / k)\left(R_{1}+R_{2}\right)+R_{1}}$ [10 points off for $G=\left(R_{1}+R_{2}\right) / R_{1}$]

1.2

$G=V_{0} / V_{1}=\frac{1+999}{1+(1+999)\left(f / 10^{6}\right)}=\frac{1000}{1+f / 10^{3}}=\frac{10^{6}}{10^{3}+f}$
$G=1000$ at $f \ll 10^{2} \mathrm{~Hz}$
$G=909$ at $f=10^{2} \mathrm{~Hz}$
$G=500$ at $f=10^{3} \mathrm{~Hz}$
$G=90.9$ at $f=10^{4} \mathrm{~Hz}$
$G=9.90$ at $f=10^{5} \mathrm{~Hz}$
$G=0.999$ at $f=10^{6} \mathrm{~Hz}$
$G=0.100$ at $f=10^{7} \mathrm{~Hz}$
$G=0.010$ at $f=10^{8} \mathrm{~Hz}$

Frequency (Hz)

2.1

Infinite open-loop op-amp gain: virtual short rule: $V_{+}=V_{-}$
$\frac{V_{1}-V_{-}}{R_{1}}=\frac{V_{-}-V_{0}}{R_{2}} \quad \frac{V_{2}-V_{+}}{R_{1}}=\frac{V_{+}}{R_{2}}$
$V_{1} R_{2}-V R_{2}=V_{-} \mathrm{R}_{1}-V_{0} R_{1} \quad V_{2} R_{2}-V_{+} R_{2}=V_{+} R_{1}$
Subtracting, $\left(V_{2}-V_{1}\right) R_{2}=V_{0} R_{1}$
$V_{0}=\left(V_{2}-V_{1}\right)\left(R_{2} / R_{1}\right)$
[7 points off if not in terms of resistors]
2.2 Differential gain $V_{0}=G_{ \pm}\left(V_{2}-V_{1}\right)+G_{\mathrm{C}}\left(V_{2}+V_{1}\right) / 2$
$G_{ \pm}=R_{2} / R_{1}$ Since V_{0} does not depend on $\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right), \mathrm{G}_{\mathrm{C}}=0$

3.1

3.2

The LPF needs to have a gain $G_{1}=0.9$ at $f_{1}=20 \mathrm{kHz}$ and drop to a gain $\mathrm{G}_{2}=0.001$ at $\mathrm{f}_{2}=52$ kHz . So we need a filter that has $\mathrm{f}_{2} / \mathrm{f}_{1}<2.6$.

n	$\mathrm{f}_{1} / \mathrm{f}_{\mathrm{c}}$	$\mathrm{f}_{2} / \mathrm{f}_{\mathrm{c}}$	ratio	
4	0.834	5.623	6.74	n too low
6	0.886	3.162	3.57	n too low

Midterm \#1 Solutions - EECS 145L Fall 2010

8	0.913	2.371	2.55	$\mathrm{n}=8$ OK
10	0.930	1.995	2.15	n high, but OK

$(20 \mathrm{kHz} / 0.913)<\mathrm{f}_{\mathrm{c}}<(60 \mathrm{kHz} / 2.371)$
$21.91 \mathrm{kHz}<\mathrm{f}_{\mathrm{c}}<21.93 \mathrm{kHz}$
LPF $\mathrm{n}=8, \mathrm{f}_{\mathrm{c}}=21.92 \mathrm{kHz}$
[3 points off for $\mathrm{f}_{\mathrm{c}}=20 \mathrm{kHz}$, which would make the gain 0.707 (too low) at 20 kHz]
[3 points off for $\mathrm{n}=12$ or 14]

The HPF needs to have a gain $G_{1}=0.9$ at 100 Hz and drop to a gain $\mathrm{G}_{2}=0.001$ at 2 Hz . So we need a filter that has $\mathrm{f}_{1} / \mathrm{f}_{2}<50$
$\mathrm{n} \quad \mathrm{f}_{1} / \mathrm{f}_{\mathrm{c}} \quad \mathrm{f}_{2} / \mathrm{f}_{\mathrm{c}} \quad$ ratio
$2 \quad 1.437 \quad 0.032 \quad 44.9 \quad \mathrm{n}=2 \mathrm{OK}$
$4 \quad 1.1 .199 \quad 0.178 \quad 6.74 \quad \mathrm{n}=4$ high, but OK
$(2 \mathrm{~Hz} / 0.032)<\mathrm{f}_{\mathrm{c}}<(100 \mathrm{~Hz} / 1.437)$
$62.5 \mathrm{~Hz}<\mathrm{f}_{\mathrm{c}}<69.6 \mathrm{~Hz}$
HPF $\mathrm{n}=2, \mathrm{f}_{\mathrm{c}}=65 \mathrm{~Hz}$
[3 points off for $\mathrm{f}_{\mathrm{c}}=100 \mathrm{~Hz}$, which would make the gain 0.707 (too low) at 100 Hz]
This HPF has a gain just a bit below 0.7 at 60 Hz and does not meet the gain requirement of 0.01 . A notch filter with accurate components should provide the necessary low gain.

Note: an alternative solution to the notch filter was to use a 10th or 12th order HPF to reduce the gain from 0.9 at 100 Hz to 0.01 at 60 Hz - although this solution uses 2 or 3 more op-amps, costs more, and has more components that can fail, it was accepted.

4.1

[2 points off for not producing an output that varied from 0 to 10 V as the liquid level varied from 0 m to 10 m]
[5 points off for not providing a buffer amplifier between the $10 \mathrm{k} \Omega$ sensor resistor and the readout circuit; this is an inferior design where the output voltage is not linearly proportional to liquid level]
4.2 The relationship between liquid height h (in meters) and output voltage V (in volts) is $\mathrm{V}=\mathrm{h}$

October 6, 2010

Midterm \#1 Solutions - EECS 145L Fall 2010

An rms uncertainly of 1 mV in V produces an rms uncertainty in liquid height of 1 mm . [2 points off for mV]
4.3 Determining the change in the liquid level per minute requires making two measurements one minute apart and taking the difference. Making two measurements a and b exactly one minute apart results in a measurement of the change in liquid level $f=a-b$ (in mm per minute).
$\sigma_{a}=\sigma_{a}=1 \mathrm{~mm}$ (from part 4.2)
$\sigma_{f}^{2}=\sigma_{a}^{2}+\sigma_{b}^{2}=2(\mathrm{~mm} / \mathrm{min})^{2}$
$\sigma_{f}=1.414 \mathrm{~mm} / \mathrm{min}$ (1.4 mm was accepted for full credit)
[2 points off for $1.414 \mathrm{mV} / \mathrm{min}$]
[3 points off for $1 \mathrm{~mm} / \mathrm{min}$ or $2 \mathrm{~mm} / \mathrm{min}$]
[4 points off for $1 \mathrm{mV} / \mathrm{min}$ or $2 \mathrm{mV} / \mathrm{min}$]
[5 points off for $0.01 \% / \mathrm{min}$]
[6 points off for 1 mV or 2 mV]
Note 1: The equation sheet said that if $f=k(a-b)$ then $\sigma_{f}^{2}=k^{2}\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)$
Note 2: The rate of change in liquid level is measured in $\mathrm{mm} / \mathrm{min}$, not mV or $\mathrm{mV} / \mathrm{min}$.

145L midterm \#1 grade distribution:

		maximum score $=$ average score $=85.0$ Problem 1	$21.9(5.1 \mathrm{rms})(25 \mathrm{max})$	$(19.2 \mathrm{rms})$

EECS average 88.4 (12.1 rms)
BioEng average 81.7 (25.8 rms)

