1.1  

$$V_{0} = (k / f)(V_{1} - V_{2}) \qquad V_{2} = V_{0}R_{1} / (R_{1} + R_{2})$$

$$V_{0} = (k / f)V_{1} - (k / f)V_{0}R_{1} / (R_{1} + R_{2})$$

$$V_{0}[1 + (k / f)R_{1} / (R_{1} + R_{2})] = V_{1}(k / f)$$

$$G = V_{0} / V_{1} = \frac{k / f}{1 + (k / f)R_{1} / (R_{1} + R_{2})} = \frac{1}{(f / k) + R_{1} / (R_{1} + R_{2})} = \frac{R_{1} + R_{2}}{(f / k)(R_{1} + R_{2}) + R_{1}}$$
[10 points off for  $G = (R_{1} + R_{2})/R_{1}$ ]

1.2

$$G = V_0 / V_1 = \frac{1+999}{1+(1+999)(f/10^6)} = \frac{1000}{1+f/10^3} = \frac{10^6}{10^3+f}$$

$$G = 1000 \text{ at } f << 10^2 \text{ Hz} \qquad G = 909 \text{ at } f = 10^2 \text{ Hz} \qquad G = 500 \text{ at } f = 10^3 \text{ Hz}$$

$$G = 90.9 \text{ at } f = 10^4 \text{ Hz} \qquad G = 9.90 \text{ at } f = 10^5 \text{ Hz} \qquad G = 0.999 \text{ at } f = 10^6 \text{ Hz}$$







Infinite open-loop op-amp gain: virtual short rule:  $V_+ = V_-$ 

$$\frac{V_1 - V_-}{R_1} = \frac{V_- - V_0}{R_2} \qquad \frac{V_2 - V_+}{R_1} = \frac{V_+}{R_2}$$

 $V_1R_2 - V_-R_2 = V_-R_1 - V_0R_1$   $V_2R_2 - V_+R_2 = V_+R_1$ Subtracting,  $(V_2 - V_1) R_2 = V_0R_1$ 

$$V_0 = (V_2 - V_1)(R_2/R_1)$$

[7 points off if not in terms of resistors]

**2.2** Differential gain 
$$V_0 = G_{\pm}(V_2 - V_1) + G_C(V_2 + V_1)/2$$
  
 $G_{\pm} = R_2/R_1$  Since V<sub>0</sub> does not depend on (V<sub>1</sub> + V<sub>2</sub>), G<sub>C</sub> = 0

3.1



## 3.2

The LPF needs to have a gain  $G_1 = 0.9$  at  $f_1 = 20$  kHz and drop to a gain  $G_2 = 0.001$  at  $f_2 = 52$  kHz. So we need a filter that has  $f_2/f_1 < 2.6$ .

| n    | $f_1/f_c$ | $f_2/f_c$ | ratio |           |
|------|-----------|-----------|-------|-----------|
| 4    | 0.834     | 5.623     | 6.74  | n too low |
| 6    | 0.886     | 3.162     | 3.57  | n too low |
| Oata | hor 6 20  | 10        |       |           |

## Midterm #1 Solutions – EECS 145L Fall 2010

```
8 0.913 2.371 2.55 n = 8 OK
10 0.930 1.995 2.15 n high, but OK
```

```
\begin{array}{l} (20 \ kHz/0.913) < f_c < (60 \ kHz/2.371) \\ 21.91 \ kHz < f_c < 21.93 \ kHz \end{array}
```

LPF n = 8,  $f_c = 21.92 \text{ kHz}$ 

[3 points off for  $f_c = 20$  kHz, which would make the gain 0.707 (too low) at 20 kHz]

[3 points off for n = 12 or 14]

The HPF needs to have a gain  $G_1 = 0.9$  at 100 Hz and drop to a gain  $G_2 = 0.001$  at 2 Hz. So we need a filter that has  $f_1/f_2 < 50$ 

 $\begin{array}{ll} n & f_1/f_c & f_2/f_c & ratio \\ 2 & 1.437 & 0.032 & 44.9 & n=2 \ OK \\ 4 & 1.199 & 0.178 & 6.74 & n=4 \ high, \ but \ OK \\ (2 \ Hz/0.032) < f_c < (100 \ Hz/1.437) \\ 62.5 \ Hz < f_c < 69.6 \ Hz \\ \end{array}$ 

HPF n = 2,  $f_c = 65 \text{ Hz}$ 

[3 points off for  $f_c = 100$  Hz, which would make the gain 0.707 (too low) at 100 Hz]

This HPF has a gain just a bit below 0.7 at 60 Hz and does not meet the gain requirement of 0.01. A notch filter with accurate components should provide the necessary low gain.

Note: an alternative solution to the notch filter was to use a 10th or 12th order HPF to reduce the gain from 0.9 at 100 Hz to 0.01 at 60 Hz- although this solution uses 2 or 3 more op-amps, costs more, and has more components that can fail, it was accepted.

4.1



[2 points off for not producing an output that varied from 0 to 10 V as the liquid level varied from 0 m to 10 m]

[5 points off for not providing a buffer amplifier between the 10 k $\Omega$  sensor resistor and the readout circuit; this is an inferior design where the output voltage is not linearly proportional to liquid level]

4.2 The relationship between liquid height h (in meters) and output voltage V (in volts) is V = h

```
October 6, 2010
```

## Midterm #1 Solutions – EECS 145L Fall 2010

An rms uncertainly of 1 mV in V produces an rms uncertainty in liquid height of 1 mm. [2 points off for mV]

4.3 Determining the change in the liquid level per minute requires making two measurements one minute apart and taking the difference. Making two measurements a and b exactly one minute apart results in a measurement of the change in liquid level f = a - b (in mm per minute).

 $\sigma_a = \sigma_a = 1 \text{ mm} (\text{from part 4.2})$  $\sigma_f^2 = \sigma_a^2 + \sigma_b^2 = 2 \text{ (mm/min)}^2$  $\sigma_f = 1.414 \text{ mm} / \text{min}$  (1.4 mm was accepted for full credit) [2 points off for 1.414 mV/min] [3 points off for 1 mm/min or 2 mm/min] [4 points off for 1 mV/min or 2 mV/min] [5 points off for 0.01%/min] [6 points off for 1 mV or 2 mV]

Note 1: The equation sheet said that if f = k(a - b) then  $\sigma_f^2 = k^2(\sigma_a^2 + \sigma_b^2)$ Note 2: The rate of change in liquid level is measured in mm/min, not mV or mV/min.

## 145L midterm #1 grade distribution:

|         | 8                       | maximum scor<br>average score = | e = 100<br>= 85.0 (B) (1 | 9.2 rms) |
|---------|-------------------------|---------------------------------|--------------------------|----------|
| Problem |                         |                                 |                          | ,        |
| 1       | 21.9 (5.1 rms) (25 max) | < 55                            | 3                        | F        |
|         |                         | 55-59                           | 0                        | F        |
| 2       | 22.2 (6.0 rms) (25 max) | 60-64                           | 1                        | D        |
|         |                         | 65-69                           | 0                        | D        |
| 3       | 26.7 (7.6 rms) (30 max) | 70-74                           | 0                        | С        |
|         |                         | 75-79                           | 2                        | С        |
| 4       | 14.2 (5.6 rms) (20 max) | 80-84                           | 1                        | В        |
|         |                         | 85-89                           | 3                        | В        |
|         |                         | 90-94                           | 5                        | А        |
|         |                         | 95-99                           | 3                        | А        |
|         |                         | 100                             | 6                        | A+       |

EECS average 88.4 (12.1 rms) BioEng average 81.7 (25.8 rms)