\qquad
UNIVERSITY OF CALIFORNIA, BERKELEY
Electrical Engineering and Computer Sciences Department
EECS 145L Electronic Transducer Lab
MIDTERM \#1 (100 points maximum)
October 7, 2009
(closed book, calculators OK, equation sheet provided)
(You will not receive full credit if you do not show your work)

PROBLEM 1 (10 points)

Describe four essential differences between the ideal operational amplifier and the realistic operational amplifier (there are at least six).

PROBLEM 2 (10 points)

Describe the operation of the electromagnetic isolation amplifier (how does it work?)
\qquad

PROBLEM 3 (36 points)

In the circuit shown below, assume the following:

- The op-amp open-loop gain $A=10^{6} \mathrm{~Hz} / f$ for $f>10 \mathrm{~Hz}$.
- Op-amp input currents are zero
- Output offset can be neglected
- The wave generator produces a pure sinewave of frequency f and has zero output impedance

3.1 (20 points) Derive expressions for V_{0}, V_{3}, and V_{2} as a function of input V_{1}, frequency f and open-loop gain A.
3.2 (16 points) Evaluate the above expressions at $f=10 \mathrm{~Hz}$ and 1 MHz . Note: To simplify the calculation, you can neglect small terms that change the answer by less than a few percent.

PROBLEM 4 (20 points)

Design a circuit that uses two op-amps to combine four inputs as follows:

$$
V_{0}(t)=V_{1}(t)+V_{2}(t)-V_{3}(t)-V_{4}(t)
$$

Sketch your circuit below:

PROBLEM 5 (24 points)

Describe how you would measure the following characteristics of an instrumentation amplifier:
5.1 (6 points) Common-mode and differential-mode gains as a function of frequency.
5.2 (6 points) Output offset voltages relative to input $\left(\mathrm{V}_{\mathrm{RTI}}\right)$ and relative to output $\left(\mathrm{V}_{\mathrm{RTO}}\right)$ with both inputs grounded.
\qquad
5.3 (6 points) Input bias currents $\mathrm{I}_{\mathrm{B}+}$ and $\mathrm{I}_{\mathrm{B}-}$
5.4 (6 points) Noise factors relative to input $\left(D_{\mathrm{I}}\right)$ and relative to output (D_{O}) $V_{\mathrm{rms}}=\sqrt{\Delta f\left[\left(D_{1} G\right)^{2}+\left(D_{0}\right)^{2}\right]}$ using a voltmeter that measures rms voltage in a 10 kHz bandwidth.

