Midterm \#1 Solutions - EECS 145L Fall 2008

1.1 Electronic Sensor: Device that converts a physical signal into an electrical signal
[3 points off for electronic input only]
[2 points off for electronic or physical input]
1.2 Sensitivity of an electronic sensor: Change in output per unit change in physical quantity being sensed
[2 points off for ability to detect small signals or small changes]
Note: For a physical signal f and an electrical output V the sensitivity is $d V / d f$, a property of the sensor. The smallest detectable signal change is $\Delta \mathrm{f}=\Delta \mathrm{V} /(\mathrm{dV} / \mathrm{df})$ and depends on both the sensitivity and the electronic noise $\Delta \mathrm{V}$.
1.3 Instrumentation Amplifier: Amplifier circuit that has (1) output voltage proportional to the voltage difference between the two inputs , (2) very high input impedance, (3) low output impedance, and (4) constant gain over a large bandwidth
[2 points off for omitting constant gain over a frequency range; high input impedance, low output impedance, and differential gain do not distinguish it from the op-amp]
1.4 Differential gain (of an amplifier with two inputs): Change in output voltage divided by the change in the difference in input voltages
1.5 Common mode gain (of an amplifier with two inputs): The gain for signals present at both inputs
1.6 Johnson noise (of a resistor): Random voltage generated in a resistor due to the thermal agitation of electrons within it.

2.1

Infinite open-loop op-amp gain: virtual short rule: $V_{+}=V_{-}$
$\frac{V_{1}-V_{-}}{R_{1}}=\frac{V_{-}-V_{0}}{R_{2}} \quad \frac{V_{2}-V_{+}}{R_{1}}=\frac{V_{+}}{R_{2}}$
$V_{1} R_{2}-V_{-} R_{2}=V_{-} \mathrm{R}_{1}-V_{0} R_{1} \quad V_{2} R_{2}-V_{+} R_{2}=V_{+} R_{1}$
Subtracting, $\left(V_{2}-V_{1}\right) R_{2}=V_{0} R_{1}$
$V_{0}=\left(V_{2}-V_{1}\right)\left(R_{2} / R_{1}\right)$
2.2 Differential gain $V_{0}=G_{ \pm}\left(V_{2}-V_{1}\right)+G_{\mathrm{C}}\left(V_{2}+V_{1}\right) / 2$
$G_{ \pm}=R_{2} / R_{1}$ Since V_{0} does not depend on $\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right), \mathrm{G}_{\mathrm{C}}=0$
3.1

Frequency (Hz)

3.2

The LPF needs to have a gain $G_{1}=0.9$ at $f_{1}=20 \mathrm{kHz}$ and drop to a gain $\mathrm{G}_{2}=0.001$ at $\mathrm{f}_{2}=52$ kHz . So we need a filter that has $\mathrm{f}_{2} / \mathrm{f}_{1}<2.6$.

n	$\mathrm{f}_{1} / \mathrm{f}_{\mathrm{c}}$	$\mathrm{f}_{2} / \mathrm{f}_{\mathrm{c}}$	ratio	
4	0.834	5.623	6.74	n too low
6	0.886	3.162	3.57	n too low
8	0.913	2.371	2.55	$\mathrm{n}=8$ OK
10	0.930	1.995	2.15	n high, but OK

$(20 \mathrm{kHz} / 0.913)<\mathrm{f}_{\mathrm{c}}<(60 \mathrm{kHz} / 2.371)$
$21.91 \mathrm{kHz}<\mathrm{f}_{\mathrm{c}}<21.93 \mathrm{kHz}$
LPF $\mathrm{n}=8, \mathrm{f}_{\mathrm{c}}=21.92 \mathrm{kHz}$
[3 points off for $f_{c}=20 \mathrm{kHz}$, which would make the gain 0.707 (too low) at 20 kHz]
[3 points off for $n=12$ or 14]

The HPF needs to have a gain $G_{1}=0.9$ at 100 Hz and drop to a gain $\mathrm{G}_{2}=0.001$ at 2 Hz . So we need a filter that has $\mathrm{f}_{1} / \mathrm{f}_{2}<50$

n	$\mathrm{f}_{1} / \mathrm{f}_{\mathrm{c}}$	$\mathrm{f}_{2} / \mathrm{f}_{\mathrm{c}}$	ratio	
2	1.437	0.032	44.9	$\mathrm{n}=2$ OK
4	1.199	0.178	6.74	$\mathrm{n}=4$ high, but OK

$(2 \mathrm{~Hz} / 0.032)<\mathrm{f}_{\mathrm{c}}<(100 \mathrm{~Hz} / 1.437)$
$62.5 \mathrm{~Hz}<\mathrm{f}_{\mathrm{c}}<69.6 \mathrm{~Hz}$
HPF $\mathrm{n}=2, \mathrm{f}_{\mathrm{c}}=65 \mathrm{~Hz}$
[3 points off for $\mathrm{f}_{\mathrm{c}}=100 \mathrm{~Hz}$, which would make the gain 0.707 (too low) at 100 Hz]
This HPF has a gain just a bit below 0.7 at 60 Hz and does not meet the gain requirement of 0.01 . A notch filter with accurate components should provide the necessary low gain.

Note: an alternative solution to the notch filter was to use a 10th or 12th order HPF to reduce the gain from 0.9 at 100 Hz to 0.01 at 60 Hz - although this solution uses 2 or 3 more op-amps, costs more, and has more components that can fail, it was accepted.

Midterm \#1 Solutions - EECS 145L Fall 2008

145L midterm \#1 grade distribution:

Problem	
1	$33.1(2.9 \mathrm{rms})(36 \mathrm{max})$
2	$27.4(5.4 \mathrm{rms})(30 \mathrm{max})$
3	$32.2(3.5 \mathrm{rms})(34 \mathrm{max})$

maximum score $=$	100	
average score $=$	92.7	$(8.8 \mathrm{rms})$
$70-74$	2	$\mathrm{C}-$
$75-79$	2	C
$80-84$	1	$\mathrm{C}+$
$85-89$	3	$\mathrm{~B}-$
$90-94$	4	B
$95-99$	8	$\mathrm{~B}+$
100	10	A

Note: The average score among the 14 EECS undergraduates was 95.0. The average score for the 11 BioEng undergraduates was 91.3.

