UNIVERSITY OF CALIFORNIA, BERKELEY Electrical Engineering and Computer Sciences Department EECS 145L Electronic Transducer Lab MIDTERM #1 (100 points maximum) October 8, 2008

(closed book, calculators OK, equation sheet provided) (You will not receive full credit if you do not show your work)

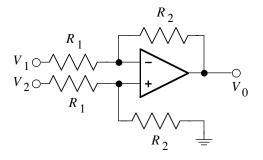
PROBLEM 1 (36 points)

Briefly define the following terms:

1.1 Electronic sensor

1.2 Sensitivity of an electronic sensor

1.3 Instrumentation amplifier

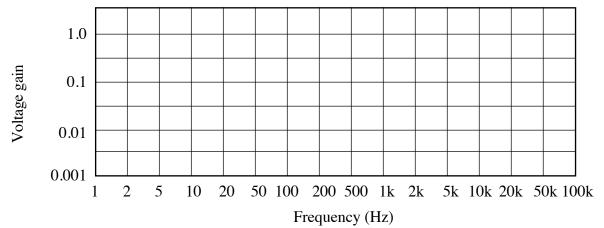

1.4 Differential gain (of an amplifier with two inputs)

1.5 Common mode gain (of an amplifier with two inputs)

1.6 Johnson noise (of a resistor)

PROBLEM 2 (30 points)

2.1 (15 points) Derive an equation for the output V_0 of the op-amp circuit shown below as a function of the input voltages V_1 and V_2 and the resistors R_1 and R_2 . Assume that the op-amp has infinite open loop gain and infinite input impedances.



2.2 (15 points) Using the equation derived in part 2.1, write an equation for the differential and common-mode gains as functions of the resistors R_1 and R_2 .

PROBLEM 3 (34 points)

Design an analog filter circuit that has the following properties

- Gain between 0.9 and 1.0 for frequencies between 100 Hz and 20 kHz
- Gain less than 0.001 for frequencies above 52 kHz
- Gain less than 0.01 at 60 Hz
- Gain less than 0.001 for frequencies below 2 Hz
- **3.1** (10 points) Sketch the required gain vs. frequency below

3.2 (24 points) Design a filtering circuit that meets the requirements above with the minimum complexity and cost. For each filtering element, give type, corner frequency, and order number. (Hint: see equation sheet for a table of f/f_c vs. gain and order.) Do not give resistor and capacitor values.