SID _____

UNIVERSITY OF CALIFORNIA, BERKELEY Electrical Engineering and Computer Sciences Department

EECS 145L Electronic Transducer Lab MIDTERM #1 (100 points maximum) October 3, 2007

(closed book, calculators OK, equation sheet provided) (You will not receive full credit if you do not show your work)

PROBLEM 1 (30 points)

Design a circuit using op-amps for adding two waveform inputs $V_1(t)$ and $V_2(t)$ to produce the output $V_0(t) = a V_1(t) + b V_2(t)$, where both a and b are positive, and the two inputs have high impedance.

Sketch your circuit design and describe all circuit elements.

PROBLEM 2 (10 points)

Given an instrumentation amplifier, describe how you would measure the differential and common mode gains at 10 different frequencies.

PROBLEM 3 (20 points)

Design a Butterworth low-pass filter that has gain = 1 at 0 Hz, 0.999 at 20 kHz, and 0.0001 at 60 kHz, and the minimum number of stages. Design means determining the number of stages and the corner frequency

PROBLEM 4 (30 points)

Describe how each of the following works in detail

4a (10 points) Electromagnetic isolation amplifier

4b (10 points) Digital angle encoder

NAME	(please	print)
	(preuse	print)

SID _____

4c (10 points) Stepping motor

PROBLEM 5 (10 points)

You have a large bag of $1k\Omega$ resistors. You measure the collection and find that the resistors have an average resistance of 1050 Ω and a standard deviation of 100 Ω .

If you connect pairs of these resistors to make a set of 2 k Ω resistors, what is the average resistance and standard deviation of the new resistors?