\qquad
UNIVERSITY OF CALIFORNIA, BERKELEY
Electrical Engineering and Computer Sciences Department
EECS 145L Electronic Transducer Lab
MIDTERM \#1 (100 points maximum)
October 3, 2007
(closed book, calculators OK, equation sheet provided)
(You will not receive full credit if you do not show your work)

PROBLEM 1 (30 points)

Design a circuit using op-amps for adding two waveform inputs $V_{1}(\mathrm{t})$ and $V_{2}(\mathrm{t})$ to produce the output $V_{0}(\mathrm{t})=a V_{1}(t)+b V_{2}(t)$, where both a and b are positive, and the two inputs have high impedance.

Sketch your circuit design and describe all circuit elements.
\qquad

PROBLEM 2 (10 points)

Given an instrumentation amplifier, describe how you would measure the differential and common mode gains at 10 different frequencies.

PROBLEM 3 (20 points)

Design a Butterworth low-pass filter that has gain $=1$ at $0 \mathrm{~Hz}, 0.999$ at 20 kHz , and 0.0001 at 60 kHz , and the minimum number of stages. Design means determining the number of stages and the corner frequency

PROBLEM 4 (30 points)

Describe how each of the following works in detail
4a (10 points) Electromagnetic isolation amplifier

4b (10 points) Digital angle encoder
\qquad

4c (10 points) Stepping motor

PROBLEM 5 (10 points)

You have a large bag of $1 \mathrm{k} \Omega$ resistors. You measure the collection and find that the resistors have an average resistance of 1050Ω and a standard deviation of 100Ω.
If you connect pairs of these resistors to make a set of $2 \mathrm{k} \Omega$ resistors, what is the average resistance and standard deviation of the new resistors?

