# EECS 145L Final Examination Solutions (Fall 2007) 

UNIVERSITY OF CALIFORNIA, BERKELEY
College of Engineering, Electrical Engineering and Computer Sciences Department
1.1 Ideal op-amp: Device with differential inputs $V_{-}$and $V_{+}$, and an output $V_{0}$. The output is given by $V_{0}=A\left(V_{+}-V_{-}\right)$, where $A$ is infinite at all frequencies. No current flows into either input (infinite input impedance) and the output impedance is zero.
[2 points off for missing each of the four critical properties: infinite differential gain, zero common mode gain, infinite input impedance, zero output impdance]
$\left[\mathrm{V}_{0}=\mathrm{A}\left(\mathrm{V}_{+}-\mathrm{V}_{-}\right)\right.$with infinite A was accepted for zero common mode gain]
1.2 Johnson noise: Random voltage generated by the thermal agitation of electrons in a resistor or semiconductor.
1.3 Sensitivity (of a sensor): Change in electrical output per unit change in the physical quantity being sensed
1.4 Actuator: Device that converts electrical energy into physical energy
1.5 Strain (mechanical): Fractional change in length $\Delta \mathrm{L} / \mathrm{L}$
[3 points off for defining a strain gauge]
2.1 Differential gain 1000, bandwidth 10 kHz
[3 points off for Gain $=10,000$, bandwidth 1 kHz ]
[3 points off for Gain $=100$, bandwidth 100 kHz ]
2.2 Output $\mathrm{V}_{\mathrm{rms}}=\left(4 \mathrm{nV} \mathrm{Hz}^{-1 / 2}\right)\left(100 \mathrm{~Hz}^{1 / 2}\right)(1000)=0.4 \mathrm{mV}$ in 10 kHz
[2 points off for input noise rather than output noise]
[3 points off for not taking the square root of the bandwidth]
2.3 We want a Butterworth low-pass filter with a gain of $G_{1}=0.99$ at $f_{P}=1 \mathrm{kHz}$ and $G_{2}=0.01$ at $f_{S}=$ $2 \mathrm{kHz} . \mathrm{f}_{\mathrm{S}} / \mathrm{f}_{\mathrm{P}}=2$.

| n | $\mathrm{f}_{1} / \mathrm{f}_{\mathrm{c}}$ | $\mathrm{f}_{2} / \mathrm{f}_{\mathrm{c}}$ | $\mathrm{f}_{2} / \mathrm{f}_{1}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| 6 | 0.723 | 2.154 | 2.98 | n too low |
| 8 | 0.784 | 1.778 | 2.27 | n too low |
| 10 | 0.823 | 1.585 | 1.93 | $\mathrm{n}=10$ OK |

Using $f_{1} / f_{c}=0.823, f_{c}=1 \mathrm{kHz} / 0.823=1.215 \mathrm{kHz}$
Using $\mathrm{f}_{1} / \mathrm{f}_{\mathrm{c}}=1.585, \mathrm{f}_{\mathrm{c}}=2 \mathrm{kHz} / 1.585=1.262 \mathrm{kHz}$

The order is 10 and a corner frequency between 1.215 kHz and 1.262 kHz is OK . (order 12 also accepted)
[2 points off for order 8]
[2 points off for giving input noise before filtering]
[2 points off for giving input noise of $0.141 \mu \mathrm{~V}$ ]
After amplification and filtering, the output noise is $V_{r m s}=\left(4 \mathrm{nV} \mathrm{Hz}^{-1 / 2}\right) \operatorname{sqrt}(1.24 \mathrm{kHz}) \quad(1000)=$ $\left(4 \mathrm{nV} \mathrm{Hz}^{-1 / 2}\right)\left(35.3 \mathrm{~Hz}^{1 / 2}\right)(1000)=0.141 \mathrm{mV}$.
So the filtering reduced the output noise from $\pm 0.4 \mathrm{mV}$ to $\pm 0.14 \mathrm{mV}$
S. Derenzo
[3 points off if output noise not given or determined by multiplying the answer from 2.2 by 0.01 or $0.99]$
2.4 The best way to reduce the 60 Hz interference from the middle of a band of frequencies of interest is to use a notch filter. The common mode rejection ratio of 60 dB means that the common mode gain is $1000 / 1000=1$. So the instrumentation amplifier 60 Hz output will be $\pm 10 \mathrm{mV}$ from a common mode input of $\pm 10 \mathrm{mV}$. The output due to a differential 60 Hz interference is $( \pm 0.01 \mathrm{mV})(1000)=$ $\pm 10 \mathrm{mV}$. In the worst case, these are in phase, producing a total of $\pm 20 \mathrm{mV}$. A notch filter can reduce this total by a factor of typically 30 , to $\pm 0.7 \mathrm{mV}$.
[Any value between 0.1 and 2 mV was accepted for full credit]
[2 points off for including one 10 mV and not the other]
[3 points off for giving output noise as $\sim$ zero]
[4 points off if input noise not given or not based on 60 Hz interference]
[4 points off if output noise not given]
[8 points off for using a HPF, which removes the important earthquake frequencies below 60 Hz ]
$\mathbf{2 . 5}$ [OK to reverse order of low pass and notch filters]

[4 points off if amplifier not in circuit]
3.1 Since $R_{2} /\left(R_{1}+R_{2}\right)=R_{3} /\left(R_{\mathrm{T}}+R_{3}\right), R_{2}=R_{3}$, and $R_{\mathrm{T}}=10 \mathrm{k} \Omega$ at $20^{\circ} \mathrm{C}$ the solution is $R_{1}=10 \mathrm{k} \Omega$.
$3.2 \mathrm{P}=V_{\mathrm{T}}{ }^{2} / R=(0.5 \text { volts })^{2} /(10 \mathrm{k} \Omega)=25 \mu \mathrm{~W}$
[3 points off for assuming $\mathrm{V}_{\mathrm{T}}=1$ volt]
3.3 Amplifier output of 0.05 volts means a bridge output $\mathrm{V}_{+}-\mathrm{V}_{-}=0.01$ volts. Using the bridge equation (supplied on the equation sheets), we have RT $=(10000 \Omega) *(10000 \Omega-0.01 * 20,000 \Omega) /(10000 \Omega$ $+0.01 * 20,000 \Omega)=10,000 \Omega(9,800 / 10,200)=9608 \Omega$
[2 points off for not dividing by the amplifier gain]
[ 3 points off for assuming a linear response from $0{ }^{\circ} \mathrm{C}$ and $0 \Omega$ to $20^{\circ} \mathrm{C}$ and $10 \mathrm{k} \Omega$ ]
$3.4 T=20^{\circ} \mathrm{C}+(9608 \Omega-10000 \Omega) /\left(-300 \Omega / \mathrm{C}^{\circ}\right)=21.3^{\circ} \mathrm{C}$
$3.5 V_{T}=1-10000 \Omega /(10000 \Omega+9608 \Omega)=0.490$ volts
$P=(0.490 \text { volts })^{2} /(9608 \Omega)=24.99 \mu \mathrm{~W}(25 \mu \mathrm{~W}$ was accepted for full credit $)$
3.6 Dissipation coefficient $=25 \mu \mathrm{~W} /\left(21.3^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)=19 \mu \mathrm{~W} /{ }^{\circ} \mathrm{C}$
[2 points off for using difference between 3.5 and 3.2 in numerator]
[2 points off for using 20C in denominator]
4.1

[6 points of if circuit does not allow control of $\mathrm{V}_{\text {diode }}$ or $\mathrm{I}_{\text {diode }}$ ]
[8 points of if no external bias]
[8 points off for a voltage controlled current driver]
[4 points off if only forward or only reverse bias]
4.2 Adjust potentiometer, measure $\mathrm{V}_{1}$

Measure $\mathrm{V}_{2}$
Voltage across diode $V_{\text {diode }}=V_{1}-V_{2}$
Current through diode $\mathrm{I}_{\text {diode }}=\mathrm{V}_{2} / \mathrm{R}$
Change $V_{1}$ and repeat to measure entire curve
[2 points off for measuring a single $V_{\text {diode }}, I_{\text {diode }}$ point- the problem asked for a measurement of $I_{\text {diode }}$ as a function of $\mathrm{V}_{\text {diode. }}$.]
[4 points off for failing to determine $\mathrm{I}_{\text {diode }}$ or $\mathrm{V}_{\text {diode }}$ ]
Its is also possible to use a voltage-controlled current driver. A series of currents is set and the voltage across the diode measured for each current.
4.3 See textbook, figure 4.36 for $\mathrm{I}_{\text {diode }}$ vs. $\mathrm{V}_{\text {diode }}$ curves

## 5.1

If the temperature at the output of the mixing valve is T (in ${ }^{\circ} \mathrm{C}$ ), the output of the solid state temperature sensor is $V_{1}=-(T+273) \mathrm{mV}$ which is summed with +273 mV to produce $\mathrm{V}_{2}=(100$ $\mathrm{mV}) \mathrm{T}$ at the output of the summing op-amp.
[A thermocouple could also be used, but this would require keeping the reference junction at a known temperature]
[a thermistor was allowed, in spite of its nonlinear response. As may be seen in Figure 4.23 of the textbook, the thermistor bridge output is reasonably linear over a $\pm 30^{\circ} \mathrm{C}$ temperature range.]
[ 3 points off for using a thermistor without specifying resistance at 50 C because this is needed to put the maximum sensitivity at midrange between 20 C and 80C.]
[ 3 points off for not designing $10 \mathrm{C} / \mathrm{V}$ sense value at set point comparison point]

5.2 The user set point is at 2.0 V , and by the virtual short rule, $\mathrm{V} 2=2.0$ volts, which corresponds to a temperature of $20^{\circ} \mathrm{C}$, as desired. The power op-amp output $\mathrm{V} 3=-5 \mathrm{~V}$, as needed to pass only $20^{\circ} \mathrm{C}$ water through the mixing valve.
[Note that V2 is actually a bit higher than 2.0 V so that the power op-amp gain can produce -5 V . Remember the basis for the virtual short rule: The op-amp produces whatever output is necessary to make both of its inputs nearly equal. The difference in inputs is 5 V divided by the open-loop gain which in this case is the gain of the final amplifier]
5.3 When the set point temperature is changed to 6.0 V , the output of the power op-amp will be driven strongly positive to mix in hot water. The system will come into equilibrium when V2 is approximately 6.0 V , which occurs when the solid state temperature sensor is at $60^{\circ} \mathrm{C}$, as desired.
5.4 If the hot water temperature is reduced from $80^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, the output of the mixing valve will become cooler, and V2 will drop below the user set point of 6.0 V . This will increase the voltage to the valve controller, and increase the faction of hot water in the mix. The system will again come into equilibrium when V 2 is approximately 6.0 V , which occurs when the solid state temperature sensor is at $60^{\circ} \mathrm{C}$, as desired.

## 145L FINAL EXAM GRADE STATISTICS

| Problem | 1 | 2 | 3 | 4 | 5 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 36.6 | 32.1 | 35.9 | 27.8 | 43.0 | 175.4 |
| rms | 2.6 | 4.7 | 3.6 | 5.6 | 5.4 | 13.3 |
| Maximum | 40 | 40 | 40 | 34 | 46 | 200 |

Total score distribution:

| $100-109$ | 0 | $110-119$ | 0 | $120-129$ | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $130-139$ | 1 | $140-149$ | 1 | $150-159$ | 1 |
| $160-169$ | 3 | $170-179$ | 8 | $180-189$ | 8 |
| $190-199$ | 3 | 200 | 0 |  |  |

## 145L COURSE GRADE STATISTICS

| Grade | Undergraduate Scores | Graduate Scores |
| :---: | :---: | :---: |
| A+ | 945 | none |
| A | 922, 926, 930, 937, 943 |  |
| A- |  |  |
| B+ | 888, 888, 893, 896, 903 |  |
| B | 854, 860, 865, 868, 871, 877, 877, 878 |  |
| B- | 825 |  |
| C+ | 794, 802, 805, 806 |  |
| C |  |  |
| C- | 730 |  |
| D+ |  |  |
| D |  |  |
| D- |  |  |
| F |  |  |
| Maximum | 1000 |  |
| Average | 871.3 |  |
| rms | 53.5 |  |

Note: the average grade for the lab report $4,6,12,14$ series was 89.7 and the average grade for the lab report $5,11,13,15$ series was 91.3 . To compensate, one bonus point was awarded to lab reports $4,6,12$, and 14 . This did not affect any letter grades.

