Midterm \#1 Solutions - EECS 145L Fall 2005

1a
$\mathrm{V}_{0}=\mathrm{a} \mathrm{V}_{+}+\mathrm{bV} \mathrm{V}_{-}$
$\mathrm{V}_{0}=\mathrm{G}_{ \pm}\left(\mathrm{V}_{+}-\mathrm{V}_{-}\right)+\mathrm{G}_{\mathrm{C}}\left(\mathrm{V}_{+}+\mathrm{V}_{-}\right) / 2$
$a V_{+}+b V_{-}=\left(G_{ \pm}+G_{C} / 2\right) V_{+}+\left(-G_{ \pm}+G_{C} / 2\right) V_{-}$
$\mathrm{a}=\mathrm{G}_{ \pm}+\mathrm{G}_{\mathrm{d}} / 2$
$\mathrm{b}=-\mathrm{G}_{ \pm}+\mathrm{G}_{\mathrm{C}} / 2$
Adding, $\mathrm{G}_{\mathrm{C}}=\mathrm{a}+\mathrm{b}$
Subtracting, $\mathrm{G}_{ \pm}=(\mathrm{a}-\mathrm{b}) / 2$
Alternative solution:
Since the common mode gain is the change in V_{0} per unit change in $\left(\mathrm{V}_{+}+\mathrm{V}_{-}\right) / 2$, we can add 1 V to both V_{+}and V_{-}and see that $\Delta V_{0}=a+b$. So $G_{C}=a+b$
Since the differential gain is the change in V_{0} per unit change in $\left(\mathrm{V}_{+}-\mathrm{V}_{-}\right)$, we can add 0.5 V to V_{+}, subtract 0.5 V from V_{-}and see that $\Delta \mathrm{V}_{0}=\mathrm{a} / 2-\mathrm{b} / 2$. So $\mathrm{G}_{ \pm}=(\mathrm{a}-\mathrm{b}) / 2$
$2 \mathbf{2 a}$

	Op Amp	Inverting op-amp circuit amplifier	Non-inverting op-amp circuit amplifier	Differential op- amp circuit amplifier	Instrumentation amplifier
High $\mathrm{Z}_{\text {in }}$	YES	NO	YES	NO	YES
Differential input	YES	NO	NO	YES	YES
Defined gain over a frequency band	NO	YES	YES	YES	YES

[1 point off for each wrong answer]

3a

At $10 \mathrm{~Hz}, \mathrm{~A}=10^{5}$ and the op-amp equation gives $\mathrm{V}_{3}=-\mathrm{V}_{0} / 10^{5}$ (virtual ground)
$\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / 100 \mathrm{k} \Omega-\mathrm{V}_{2} / 1 \mathrm{k} \Omega-\mathrm{V}_{2} / 1 \mathrm{k} \Omega=0$
$\mathrm{V}_{1}-\mathrm{V}_{2}-200 \mathrm{~V}_{2}=0$
$\mathrm{V}_{2}=\mathrm{V}_{1} / 201$
$\mathrm{V}_{2} / 1 \mathrm{k} \Omega+\mathrm{V}_{0} / 100 \mathrm{k} \Omega=0$
$100 \mathrm{~V}_{2}+\mathrm{V}_{0}=0$
$\mathrm{V}_{0}=-100 \mathrm{~V}_{2} \approx-0.5 \mathrm{~V}_{1}$
$\mathrm{V}_{3}=-0.5 \times 10^{-5} \mathrm{~V}_{1} \quad(\approx 0$ was also accepted $)$

3b

At $1 \mathrm{MHz}, \mathrm{A}=1$, the op-amp equation gives $\mathrm{V}_{0}=-\mathrm{V}_{3}$
$\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / 100 \mathrm{k} \Omega+\left(\mathrm{V}_{3}-\mathrm{V}_{2}\right) / 1 \mathrm{k} \Omega-\mathrm{V}_{2} / 1 \mathrm{k} \Omega=0$
$\mathrm{V}_{1}-\mathrm{V}_{2}+100 \mathrm{~V}_{3}-100 \mathrm{~V}_{2}-100 \mathrm{~V}_{2}=0$
$\mathrm{V}_{1}+100 \mathrm{~V}_{3}-201 \mathrm{~V}_{2}=0$
$\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) / 1 \mathrm{k} \Omega+\left(\mathrm{V}_{0}-\mathrm{V}_{3}\right) / 100 \mathrm{k} \Omega=0$
$100 \mathrm{~V}_{2}-100 \mathrm{~V}_{3}+\mathrm{V}_{0}-\mathrm{V}_{3}=0$
$100 \mathrm{~V}_{2}-102 \mathrm{~V}_{3}=0$
$\mathrm{V}_{2} \approx \mathrm{~V}_{3}$
$\mathrm{V}_{1} \approx 100 \mathrm{~V}_{3} \approx 100 \mathrm{~V}_{2} \approx-100 \mathrm{~V}_{0}$
$\mathrm{V}_{3} \approx \mathrm{~V}_{1} / 100$
$\mathrm{V}_{2} \approx \mathrm{~V}_{1} / 100$
$\mathrm{V}_{0} \approx-\mathrm{V}_{1} / 100$

Alternative solution: solve for any value of A and plug in for 10 Hz and $\mathbf{1 0}^{\mathbf{6}} \mathbf{~ H z}$

Op-amp equation $V_{0}=-A V_{3}$
Kirchhoff's current law at node $V_{2}: \frac{V_{1}-V_{2}}{100 \mathrm{k} \Omega}+\frac{V_{3}-V_{2}}{1 \mathrm{k} \Omega}+\frac{0-V_{2}}{1 \mathrm{k} \Omega}=0$
$V_{1}=V_{2}+100 V_{2}-100 V_{3}+100 V_{2}=201 V_{2}-100 V_{3}$
Kirchhoff's current law at node $V_{3}: \frac{V_{2}-V_{3}}{1 \mathrm{k} \Omega}+\frac{V_{0}-V_{3}}{100 \mathrm{k} \Omega}=0$
$100 V_{2}=100 V_{3}+V_{3}-V_{0}=(101+A) V_{3}$
$V_{1}=\left[\frac{201(101+A)}{100}-100\right] V_{3}=\left[\frac{10301+201 A}{100}\right] V_{3}$
$V_{1}=\left[201-\frac{100(100)}{101+A}\right] V_{2}=\left[\frac{10301+201 A}{101+A}\right] V_{2}$
$V_{2}=\frac{(101+A) V_{1}}{10301+201 A} \approx \frac{1+A / 100}{100+2 A} V_{1}, \begin{aligned} & V_{3}=\frac{100 V_{1}}{10301+210 A} \approx \frac{V_{1}}{100+2 A} \\ & V_{0}=\frac{-100 A V_{1}}{10301+201 A} \approx \frac{-A V_{1}}{100+2 A}\end{aligned}$

$$
\begin{array}{rlrl}
\mathbf{f}= & \mathbf{1 0 ~ H z}, \mathrm{A}=10^{5} & & \\
& \mathrm{~V}_{2} \approx \mathrm{~V}_{1} / 201 \approx 5 \times 10^{-3} \mathrm{~V}_{1} & \mathrm{~V}_{3} \approx 100 \mathrm{~V}_{1} /\left(201 \times 10^{5}\right) \approx 5 \times 10^{-6} \mathrm{~V}_{1} & \mathrm{~V}_{0} \approx-0.5 \mathrm{~V}_{1} \\
\mathbf{f}=\mathbf{1} \mathbf{~ M H z}, \mathrm{A}=1 & & \\
& \mathrm{~V}_{2} \approx 100 \mathrm{~V}_{1} / 10000 \approx 10^{-2} \mathrm{~V}_{1} & \mathrm{~V}_{3} \approx 100 \mathrm{~V}_{1} / 10000 \approx 10^{-2} \mathrm{~V}_{1} & \mathrm{~V}_{0} \approx-10^{-2} \mathrm{~V}_{1}
\end{array}
$$

[1 point off for showing a constant gain of 0.001 below 2 Hz and above 55 kHz]
4b

The LPF needs to have a gain $\mathrm{G}_{1}=0.9$ at $\mathrm{f}_{1}=20 \mathrm{kHz}$ and drop to a gain $\mathrm{G}_{2}<0.001$ at $\mathrm{f}_{2}=55$ kHz . Assuming that the corner frequency is near 20 kHz , find the smallest value of n for which the gain $=0.001$ occurs at a value of $\mathrm{f} 2 / \mathrm{fc}$ less than $55 \mathrm{kHz} / 20 \mathrm{kHz}=2.75$. Looking at the LPF table, we see that $\mathrm{f} / \mathrm{fc}=3.162$ at $\mathrm{n}=6, \mathrm{f} / \mathrm{fc}=2.371$ at $\mathrm{n}=8$, and $\mathrm{f} / \mathrm{fc}=1.995$ at $\mathrm{n}=10$.

Alternatively, we can use the fact that for a LPF with $\mathrm{G}_{2} \ll 1, \mathrm{G}_{2} \approx(\mathrm{f} / \mathrm{fc})^{-\mathrm{n}}$ and $\mathrm{n}=$ $-\ln \left(\mathrm{G}_{2}\right) / \ln \left(\mathrm{f} / \mathrm{f}_{\mathrm{c}}\right)=-\ln (0.001) / \ln (55 / 20)=6.83$.

Choosing $\mathrm{n}=8, \mathrm{G1}=0.9$ is at $\mathrm{fl} / \mathrm{fc}=20 \mathrm{kHz} / \mathrm{fc}=0.913$, and $\mathrm{fc}=21,906 \mathrm{~Hz}$
$\mathrm{G} 2=0.001$ is at $\mathrm{f} 2 / \mathrm{fc}=2.371$ from which we compute $\mathrm{f} 2=51,939 \mathrm{~Hz}$, which is less than 55 kHz as required.

$$
\text { LPF } \mathrm{n}=8, \mathrm{f}_{\mathrm{c}}=21.91 \mathrm{kHz}
$$

The HPF needs to have a gain $\mathrm{G}_{1}=0.9$ at 100 Hz and drop to a gain $\mathrm{G}_{2}=0.001$ at 2 Hz .
Assuming that the corner frequency is near 100 Hz , find the smallest value of n for which the gain $=0.001$ occurs at a value of $f 2 / f c$ greater than $2 \mathrm{~Hz} / 100 \mathrm{~Hz}=0.02$. Looking at the HPF table, we see that $\mathrm{f} / \mathrm{fc}=0.032$ at $\mathrm{n}=2$ and $\mathrm{f} / \mathrm{fc}=0.178$ at $\mathrm{n}=4$.

Alternatively, we can use the fact that for a HPF with $\mathrm{G}_{2} \ll 1, \mathrm{G}_{2} \approx(\mathrm{f} / \mathrm{fc})^{\mathrm{n}}$ and $\mathrm{n}=\ln \left(\mathrm{G}_{2}\right) / \ln \left(\mathrm{f} / \mathrm{f}_{\mathrm{c}}\right)$ $=\ln (0.001) / \ln (2 / 100)=1.77$.

Midterm \#1 Solutions - EECS 145L Fall 2005

Choosing $\mathrm{n}=2, \mathrm{G}_{1}=0.9$ is at $\mathrm{f}_{1} / \mathrm{f}_{\mathrm{c}}=100 \mathrm{~Hz} / \mathrm{f}_{\mathrm{c}}=1.437$, and $\mathrm{f}_{\mathrm{c}}=69 \mathrm{~Hz}$ $\mathrm{G} 2=0.001$ is at $\mathrm{f} 2 / \mathrm{fc}=0.032$ from which we compute $\mathrm{f} 2=2.2 \mathrm{~Hz}$, which is greater than 2 Hz as required.
HPF $\mathrm{n}=2, \mathrm{f}_{\mathrm{c}}=69 \mathrm{~Hz}$
$\mathrm{n}=4$, fc $=83 \mathrm{~Hz}$ was also accepted

The HPF has a gain just a bit below 0.7 at 60 Hz and does not meet the gain requirement of 0.01 . A notch filter with accurate components should provide the necessary low gain.
[3 points off for using a 10 or 12 pole HPF rather than a notch filter to reduce the gain from 0.9 at 100 Hz to 0.01 at 60 Hz - this uses 4 or 5 more op-amps, is inefficient, and has more components that can fail]

145L midterm \#1 grade distribution:

Problem
$\begin{array}{ll}1 & 13.0(3.5 \mathrm{rms})(15 \mathrm{max}) \\ 2 & 14.4(1.2 \mathrm{rms})(15 \mathrm{max}) \\ 3 & 32.3(4.6 \mathrm{rms})(35 \mathrm{max}) \\ 4 & 31.7(5.0 \mathrm{rms})(35 \mathrm{max})\end{array}$

maximum score $=$	100	
average score $=$	91.4	$(9.0 \mathrm{rms})$
$65-69$	0	F
$70-74$	1	D
$75-79$	2	C
$80-84$	1	C
$85-89$	2	B
$90-94$	3	B
$95-99$	5	A
100	5	A
	GPA 3.26	

