Midterm #1 Solutions – EECS 145L Fall 2005

1a $V_0 = a V_+ + bV_ V_0 = G_{\pm} (V_+ - V_-) + G_C (V_+ + V_-)/2$ $a V_+ + bV_- = (G_{\pm} + G_C/2) V_+ + (-G_{\pm} + G_C/2) V_$ $a = G_{\pm} + G_C/2$ $b = -G_{\pm} + G_C/2$ Adding, $G_C = a + b$ Subtracting, $G_{\pm} = (a - b)/2$

Alternative solution:

Since the common mode gain is the change in V_0 per unit change in $(V_+ + V_-)/2$, we can add 1 V to both V_+ and V_- and see that $\Delta V_0 = a + b$. So $G_C = a + b$

Since the differential gain is the change in V₀ per unit change in (V₊ – V₋), we can add 0.5 V to V₊, subtract 0.5 V from V₋ and see that $\Delta V_0 = a/2 - b/2$. So $G_{\pm} = (a - b)/2$

2 <u>a</u>								
	Op Amp	Inverting op-amp circuit amplifier	Non-inverting op-amp circuit amplifier	Differential op- amp circuit amplifier	Instrumentation amplifier			
High Z _{in}	YES	NO	YES	NO	YES			
Differential input	YES	NO	NO	YES	YES			
Defined gain over a frequency band	NO	YES	YES	YES	YES			

[1 point off for each wrong answer]

3a

At 10 Hz, A = 10⁵ and the op-amp equation gives $V_3 = -V_0/10^5$ (virtual ground) $(V_1 - V_2)/100 k\Omega - V_2/1 k\Omega - V_2/1 k\Omega = 0$ $V_1 - V_2 - 200V_2 = 0$ $V_2 = V_1/201$ $V_2/1 k\Omega + V_0 / 100 k\Omega = 0$ $100 V_2 + V_0 = 0$ $V_0 = -100 V_2 \approx -0.5 V_1$ $V_3 = -0.5 \times 10^{-5} V_1$ (≈ 0 was also accepted)

3b

At 1 MHz, A = 1, the op-amp equation gives $V_0 = -V_3$ $(V_1 - V_2)/100 \text{ k}\Omega + (V_3 - V_2)/1 \text{ k}\Omega - V_2/1 \text{ k}\Omega = 0$ $V_1 - V_2 + 100V_3 - 100V_2 - 100 V_2 = 0$ $V_1 + 100V_3 - 201V_2 = 0$

October 5, 2005

 $\begin{aligned} (V_2 - V_3)/1 \ k\Omega + (V_0 - V_3)/100 \ k\Omega &= 0 \\ 100V_2 - 100V_3 + V_0 - V_3 &= 0 \\ 100V_2 - 102V_3 &= 0 \\ V_2 &\approx V_3 \end{aligned}$

 $V_1 \approx 100V_3 \approx 100V_2 \approx -100 V_0$ $V_3 \approx V_1/100$ $V_2 \approx V_1/100$ $V_0 \approx -V_1/100$

Alternative solution: solve for any value of A and plug in for 10 Hz and 10^6 Hz Op-amp equation $V_0 = -AV_3$

Kirchhoff's current law at node $V_2: \frac{V_1 - V_2}{100 \text{ k}\Omega} + \frac{V_3 - V_2}{1 \text{ k}\Omega} + \frac{0 - V_2}{1 \text{ k}\Omega} = 0$ $V_1 = V_2 + 100V_2 - 100V_3 + 100V_2 = 201V_2 - 100V_3$ Kirchhoff's current law at node $V_3: \frac{V_2 - V_3}{1 \text{ k}\Omega} + \frac{V_0 - V_3}{100 \text{ k}\Omega} = 0$ $100V_2 = 100V_3 + V_3 - V_0 = (101 + A)V_3$ $V_1 = \left[\frac{201(101 + A)}{100} - 100\right]V_3 = \left[\frac{10301 + 201A}{100}\right]V_3$ $V_1 = \left[201 - \frac{100(100)}{101 + A}\right]V_2 = \left[\frac{10301 + 201A}{101 + A}\right]V_2$ $V_2 = \frac{(101 + A)V_1}{10301 + 201A} \approx \frac{1 + A / 100}{100 + 2A}V_1$ $V_3 = \frac{100V_1}{10301 + 201A} \approx \frac{V_1}{100 + 2A}$

$$\begin{aligned} \mathbf{f} &= \mathbf{10} \ \mathbf{Hz}, \ \mathbf{A} &= 10^5 \\ & V_2 \approx V_1/201 \approx 5 \ \mathrm{x} \ 10^{-3} \ \mathrm{V}_1 & V_3 \approx 100 \ \mathrm{V}_1/(201 \ \mathrm{x} \ 10^5) \approx 5 \ \mathrm{x} \ 10^{-6} \ \mathrm{V}_1 & V_0 \approx -0.5 \ \mathrm{V}_1 \\ \mathbf{f} &= \mathbf{1} \ \mathbf{MHz}, \ \mathbf{A} &= 1 \\ & V_2 \approx 100 \ \mathrm{V}_1/10000 \approx 10^{-2} \ \mathrm{V}_1 & V_3 \approx 100 \ \mathrm{V}_1/10000 \approx 10^{-2} \ \mathrm{V}_1 & V_0 \approx -10^{-2} \ \mathrm{V}_1 \end{aligned}$$

Midterm #1 Solutions – EECS 145L Fall 2005

[1 point off for showing a constant gain of 0.001 below 2 Hz and above 55 kHz]

4b

LPF n = 8	HPF n = 2	notch filter	
$f_c = 21.9 \text{ kHz}$	$f_c = 69 Hz$	f _n = 60 Hz	

The LPF needs to have a gain $G_1 = 0.9$ at $f_1 = 20$ kHz and drop to a gain $G_2 < 0.001$ at $f_2 = 55$ kHz. Assuming that the corner frequency is near 20 kHz, find the smallest value of n for which the gain =0.001 occurs at a value of f2/fc less than 55 kHz/20 kHz = 2.75. Looking at the LPF table, we see that f/fc = 3.162 at n = 6, f/fc = 2.371 at n = 8, and f/fc = 1.995 at n = 10.

Alternatively, we can use the fact that for a LPF with $G_2 \ll 1$, $G_2 \approx (f/fc)^{-n}$ and $n = -\ln(G_2)/\ln(f/f_c) = -\ln(0.001)/\ln(55/20) = 6.83$.

Choosing n = 8, G1 = 0.9 is at f1/fc = 20 kHz/fc = 0.913, and fc = 21,906 Hz G2 = 0.001 is at f2/fc = 2.371 from which we compute f2 = 51,939 Hz, which is less than 55 kHz as required.

LPF n = 8, $f_c = 21.91 \text{ kHz}$

The HPF needs to have a gain $G_1 = 0.9$ at 100 Hz and drop to a gain $G_2 = 0.001$ at 2 Hz.

Assuming that the corner frequency is near 100 Hz, find the smallest value of n for which the gain =0.001 occurs at a value of f2/fc greater than 2 Hz/100 Hz = 0.02. Looking at the HPF table, we see that f/fc = 0.032 at n = 2 and f/fc = 0.178 at n = 4.

Alternatively, we can use the fact that for a HPF with $G_2 \ll 1$, $G_2 \approx (f/f_c)^n$ and $n = \ln(G_2)/\ln(f/f_c) = \ln(0.001)/\ln(2/100) = 1.77$.

Midterm #1 Solutions – EECS 145L Fall 2005

Choosing n = 2, $G_1 = 0.9$ is at $f_1/f_c = 100 \text{ Hz}/f_c = 1.437$, and $f_c = 69 \text{ Hz}$ G2 = 0.001 is at f2/fc = 0.032 from which we compute f2 = 2.2 Hz, which is greater than 2 Hz as required.

HPF n = 2, $f_c = 69$ Hz n = 4, fc = 83 Hz was also accepted

The HPF has a gain just a bit below 0.7 at 60 Hz and does not meet the gain requirement of 0.01. A notch filter with accurate components should provide the necessary low gain.

[3 points off for using a 10 or 12 pole HPF rather than a notch filter to reduce the gain from 0.9 at 100 Hz to 0.01 at 60 Hz- this uses 4 or 5 more op-amps, is inefficient, and has more components that can fail]

145L midterm #1 grade distribution:

1.62					
		maximum score	maximum score = 100		
		average score =	91.4 (9.0	rms)	
Problem		65-69	0	F	
		70-74	1	D	
1	13.0 (3.5 rms) (15 max)	75-79	2	С	
2	14.4 (1.2 rms) (15 max)	80-84	1	С	
3	32.3 (4.6 rms) (35 max)	85-89	2	В	
4	31.7 (5.0 rms) (35 max)	90-94	3	В	
		95-99	5	Α	
		100	5	Α	
			GPA 3.26		