\qquad
UNIVERSITY OF CALIFORNIA, BERKELEY
Electrical Engineering and Computer Sciences Department

> EECS 145L Electronic Transducer Lab
> MIDTERM \#1 (100 points maximum)
> October 5, 2005
(closed book, calculators OK, equation sheet provided)
(You will not receive full credit if you do not show your work)

PROBLEM 1 (15 points)

An amplifier has two inputs V_{+}and V_{-}, and one output, V_{0}.

If $\mathrm{V}_{0}=\mathrm{a} \mathrm{V}_{+}+\mathrm{b} \mathrm{V}_{-}$, derive the common mode and differential mode gains as a function of a and b .

PROBLEM 2 (15 points)

In the table below, fill in YES or NO in each of the 15 boxes

	Op Amp	Inverting op-amp circuit amplifier	Non-inverting op-amp circuit amplifier	Differential op-amp circuit amplifier	Instrument- ation amplifier
High Zin					
Differential input					
Defined gain over a frequency band					

\qquad
\qquad

PROBLEM 3 (35 points)

In the op-amp amplifier circuit shown below, assume the following:

- The op-amp open-loop gain $A=10^{6} \mathrm{~Hz} / f$.
- Op-amp input currents are zero
- Output offset can be neglected
- The wave generator produces a pure sinewave of frequency f and has zero output impedance

3a (15 points) Derive expressions for V_{2}, V_{3}, and V_{0} as a function of input V_{1} at the frequency f $=10 \mathrm{~Hz}$. You may neglect small terms that contribute less than a few percent.
\qquad
\qquad

3b (20 points) Derive expressions for V_{2}, V_{3}, and V_{0} as a function of input V_{1} at the frequency f $=10^{6} \mathrm{~Hz}$. You may neglect small terms that contribute less than a few percent.

PROBLEM 4 (35 points)

Design an analog filter circuit that has the following properties

- Gain between 0.9 and 1.0 for frequencies between 100 Hz and 20 kHz
- Gain less than 0.001 for frequencies above 55 kHz
- Gain less than 0.01 at 60 Hz
- Gain less than 0.001 for frequencies below 2 Hz

4a (10 points) Sketch the required gain vs. frequency below

4b (25 points) Design a filtering circuit that meets the requirements above with the minimum complexity and cost. For each filtering element, give type, corner frequency, and order number. (Hint: see equation sheet for a table of $\mathrm{f} / \mathrm{f}_{\mathrm{c}}$ vs. gain and order.) Do not give resistor and capacitor values.

