Midterm #1 Solutions – EECS 145L Fall 2004

1a	
Johnson Noise	Shot noise
Increases with temperature	Does not depend on temperature
Occurs in resistors	Occurs in resistors and conductors
Random voltage fluctuations	Current fluctuations caused by
caused by thermal agitation of	random fluctuations in the number of
electrons in a resistor	electrons per unit time

[-2 points for each missing answer out of 4 statements]

[Several students wrote that one was white noise and the other was not. The noise power for both is proportional to V_{rms}^2 or I_{rms}^2 which is proportional to Δf . So both are white noise.]

1b Johnson Noise	Electromagnetic Interference Noise
White (random) noise	Structured noise
Due to thermal motion of	From other circuits (or lightning)
electrons in a resistor	
Increases with temperature	Does not depend on temperature
Cannot be cancelled by differential	Can be cancelled by differential
amplification	amplification
Cannot be reduced by conductive	Can be reduced by conductive
shielding	shielding

[-2 points for each missing answer out of 4 statements]

[Many students gave two statements that described one difference. Four statements are needed to describe two differences between two items.]

2a Virtual short rule $V_5 = V_6$

$$\frac{V_3 - V_5}{R_3} = \frac{V_5 - V_0}{R_4} \qquad \frac{V_4 - V_5}{R_3} = \frac{V_5}{R_4}$$

$$V_3R_4 - V_5R_4 = V_5R_3 - V_0R_3 \qquad V_4R_4 - V_5R_4 = V_5R_3$$

Subtracting, $(V_4 - V_3)R_4 = V_0R_3$

$$V_0 = (V_4 - V_3)(R_4 / R_3)$$

2b Differential gain $V_0 = G_{\pm}(V_4 - V_3) + G_C(V_4 + V_3)/2$

$$G_{\pm} = \frac{R_4}{R_3}$$
 Since V₀ does not depend on (V₃ + V₄), G_C = 0
[-2 points for G_C \neq 0]

October 6, 2004

3a From textbook, example 2.1, page 91: common mode $V_- = V_+$ Virtual short rule $V_- = V_2 = V_+ = V_1$ No current through R1 and R2: $V_- = V_2 = V_4 = V_+ = V_1 = V_3$ $V_3 + V_4$

$$G_c = \frac{V_3 + V_4}{V_- + V_+} = 1$$

3b From textbook, example 2.2, pages 91 and 92: Virtual short rule $V_{-} = V_{1}$ and $V_{+} = V_{2}$

The same current flows through R₁ and R₂: $\frac{V_2 - V_1}{R_1} = \frac{V_4 - V_3}{R_1 + 2R_2}$ Differential gain of the first stage: $\frac{V_4 - V_3}{V_+ - V_-} = \frac{R_1 + 2R_2}{R_1}$

3c From textbook, example 2.2, pages 91 and 92:

$$\frac{V_0}{V_+ - V_-} = \left(\frac{V_4 - V_3}{V_+ - V_-}\right) \left(\frac{V_0}{V_4 - V_3}\right) = \left(\frac{R_1 + 2R_2}{R_1}\right) \left(\frac{R_4}{R_3}\right)$$

4a
$$V_3 = V_-(R_1 + R_2) / R_1$$
 $V_4 = V_+(R_1 + R_2) / R_1$

$$\frac{V_4 + V_3}{V_+ + V_-} = \frac{R_1 + R_2}{R_1}$$

4b
$$\frac{V_4 - V_3}{V_+ - V_-} = \frac{R_1 + R_2}{R_1}$$

4c The new design is inferior because its first stage common mode gain is as high as the differential gain and prone to saturation. The standard design has a first stage common mode gain of only one.

5a

[- 2 points for not producing an output that varied from 0 to 10 V as the liquid level varied from 0 m to 10 m]

[- 4 points off for not providing a buffer amplifier between the 10 k Ω sensor resistor and the readout circuit]

5b Determining the change in the liquid level per minute requires making two measurements one minute apart and taking the difference. The standard deviation of each measurement is 1 mV, which corresponds to 1 mm in liquid level.

$$f = (a - b) / \Delta T$$
 $\sigma_a = \sigma_b = 1 \text{ mm}$ $\sigma_f^2 = (\sigma_a^2 + \sigma_b^2) / (\Delta T)^2 = 2 (\text{mm} / \text{min})^2$

 $\sigma_f = 1.414 \text{ mm} / \text{min}$ (1.4 mm was accepted for full credit)

[-3 points for 1 mV] [-1 point for 1.4 mV] [-3 points for 2 mV]

[-2 points for 1 mm] [-2 points for 2 mm]

Note 1: The equation sheet said that if f = k(a - b) then $\sigma_f^2 = k^2(\sigma_a^2 + \sigma_b^2)$

Note 2: The rate of change in liquid level is measured in mm/min, not mV.

6

[-1 points for HPF with n = 2] [-2 points for HPF with n > 2]

[-1 points for LPF with n = 3] [-2 points for LPF with n > 3]

145L midterm #1 grade distribution:

		maximum score – 100		
		average score =	76.8 (17.1 rms)	
Problem		30-39	1	F
		40-49	2	F
1	11.6 (4.7 rms) (16 max)	50-59	2	D
2	19.2 (2.0 rms) (20 max)	60-69	4	С
3	15.8 (5.5 rms) (20 max)	70-79	5	В-
4	15.2 (6.1 rms) (20 max)	80-89	6	В
5	8.8 (4.8 rms) (16 max)	90-97	8	А

maximum score -

October 6, 2004

100

Midterm #1 Solutions – EECS 145L Fall 2004

6.2 (1.5 rms) (16 max)

98 (max) 1

A+

3 graduate students: average = 79.7

6

- 8 BioEngineering undergraduates: average = 78.6
- 13 EECS undergraduates: average = 73.3