EECS 145L Final Examination Solutions (Fall 2004)

UNIVERSITY OF CALIFORNIA, BERKELEY
College of Engineering, Electrical Engineering and Computer Sciences Department
1.1 The ideal op-amp amplifier has (1) differential amplification (2) infinite gain at all frequencies (3) infinite input impedance (4) zero output impedance
[each of the four items was worth 2 points] [it was important to specify or show differential amplification because there is also a possible common mode gain, which is zero]
1.2 The full-wave precision rectifier has one input and one output. The output is equal to the absolute value of the input, even for very small (mV) input voltages.
[2 points off for not mentioning that it works for inputs $<0.6 \mathrm{~V}$, which distinguishes it from a fullwave rectifier that consists only of diodes; most students missed this one]
[2 points off for describing output for negative input only]
1.3 PID control is an algorithm that generates a control signal as a linear combination of the error signal P , its time integral I , and its time derivative D .
[3 points off for not mentioning the set point or error signal, which are essential for any control system]
[1 point off for not explaining the integral component of the control signal
[2 point off for not explaining the differential component of the control signal]
[2 point off for not explaining the proportional component of the control signal]
1.4 The electromagnetic isolation amplifier modulates the input signal with a high frequency carrier and transmits it to the output stage for demodulation. Transmission uses an air-core transformer that does not pass d.c. or 60 Hz .
1.5 The thermistor is a semiconducting temperature sensor whose resistance decreases with increasing temperature as $\exp (\beta / T)$
[2 points off for not stating which way the resistance changes with temperature]
2 The most straightforward solution was to isolate each 1 kHz and 2 kHz signal by using sharp $\mathrm{n}=10$ LPF and HPF in series. For a LPF with $n=10$, the gain $=0.99$ at $\mathrm{f} / \mathrm{fc}=0.823$. For a HPF with $\mathrm{n}=$ 10 , the gain $=0.99$ at $\mathrm{f} / \mathrm{fc}=1.215$.
The 1 kHz signal would be selectively passed by using a LPF with $\mathrm{fc}=1.22 \mathrm{kHz}$ in series with a HPF with $\mathrm{fc}=0.823 \mathrm{kHz}$.
The 2 kHz signal would be selectively passed by using a LPF with $\mathrm{fc}=2.44 \mathrm{kHz}$ in series with a HPF with $\mathrm{fc}=1.646 \mathrm{kHz}$.
[other high values of n were also accepted]
[8 points off for using LPF and HPF to separate the 1 kHz and 2 kHz signals from the 1 V p-p background but not separating them on separate outputs]
[6 points off for using a LPF to extract the 1 kHz signal and a HPF to extract the 2 kHz signal- this does not sufficiently remove the 1 V p-p background]
[16 points off for using a 1 kHz notch filter to generate signal 1 and a 2 kHz notch filter to generate signal 2- this results in useless signals that contain backgrounds and not the signals of interest]

Another solution was to use $\operatorname{LPF}\left(\mathrm{f}_{\mathrm{c}} \approx 2.5 \mathrm{kHz}\right)$ and $\operatorname{HPF}\left(\mathrm{f}_{\mathrm{c}} \approx 0.8 \mathrm{kHz}\right)$ to separate the 1 kHz to 2 kHz band from the total signal and then to use a 2 kHz notch filter to extract signal 1 and to use a 1
kHz notch filter to extract signal 2. This solution does not remove all of the background in the 1 to 2 kHz band, but was accepted for full credit.
The solution with the best background elimination removed the 1 kHz and 2 kHz signals with notch filters and subtracted the results from the original signal with difference amplifiers, as shown below.

[The delay compensates for the delay through the op-amps in the notch filters- it was not required for full credit]
[16 points off for using notch filters in a way that removes the 1 kHz and 2 kHz signals from the outputs]

3a Differential gain 1000, bandwidth 10 kHz
[3 points off for Gain $=10,000$, bandwidth 1 kHz]
[3 points off for Gain $=100$, bandwidth 100 kHz]
3b Output $\mathrm{V}_{\mathrm{rms}}=\left(4 \mathrm{nV} \mathrm{Hz}^{-1 / 2}\right)\left(100 \mathrm{~Hz}^{1 / 2}\right)(1000)=0.4 \mathrm{mV}$ in 10 kHz
[2 points off for input noise rather than output noise]
[3 points off for not taking the square root of the bandwidth]
3c We want a Butterworth low-pass filter with a gain of $G_{1}=0.99$ at $f_{1}=1 \mathrm{kHz}$ and $G_{2}=0.01$ at $f_{2}=$ 2 kHz .

n	$\mathrm{f}_{1} / \mathrm{f}_{\mathrm{c}}$	$\mathrm{f}_{\mathrm{c} 1}$	$\mathrm{f}_{2} / \mathrm{f}_{\mathrm{c}}$	$\mathrm{f}_{\mathrm{c} 2}$	
6	0.723	1.383 kHz	2.154	0.929 kHz	$\mathrm{fc} 1>\mathrm{fc} 2 ; \mathrm{n}$ too low
8	0.784	1.276 kHz	1.778	1.125 kHz	$\mathrm{fc} 1>\mathrm{fc} 2 ; \mathrm{n}$ too low
10	0.823	1.215 kHz	1.585	1.262 kHz	$\mathrm{fc} 1<\mathrm{fc} 2 ; \mathrm{n}=10 \mathrm{OK}$

The order is 10 and a corner frequency between 1.22 kHz and 1.26 kHz is OK . (order 12 also accepted)
[2 points off for order 8]
[4 points off if output noise not given or determined by multiplying the answer from 3 b by 0.01 or 0.99]

After amplification and filtering, the output noise would be $\mathrm{V}_{\mathrm{rms}}=(4 \mathrm{nV} \mathrm{Hz}-1 / 2) \operatorname{sqrt}(1.24 \mathrm{kHz})$ $(1000)=\left(4 \mathrm{nV} \mathrm{Hz}^{-1 / 2}\right)\left(35.3 \mathrm{~Hz}^{1 / 2}\right)(1000)=0.141 \mathrm{mV}$ in 10 kHz
So the filtering reduced the output noise from $\pm 0.4 \mathrm{mV}$ to $\pm 0.14 \mathrm{mV}$
3d The best way to reduce the 60 Hz interference from the middle of a band of frequencies of interest is to use a notch filter. The common mode rejection ratio of 60 dB means that the common mode gain

EECS 145L Final Examination Solutions (Fall 2004)

is $1000 / 1000=1$. So the instrumentation amplifier 60 Hz output will be $\pm 10 \mathrm{mV}$ from a common mode input of $\pm 10 \mathrm{mV}$. The output due to a differential 60 Hz interference is $(\pm 0.01 \mathrm{mV})(1000)=$ $\pm 10 \mathrm{mV}$. In the worst case, these are in phase, producing a total of $\pm 20 \mathrm{mV}$. A notch filter can reduce this total by a factor of typically 30 , to $\pm 0.7 \mathrm{mV}$.
[Any value between 0.1 and 2 mV was accepted for full credit]
[2 points off for including one 10 mV and not the other]
[5 points off if input noise not given or not based on 60 Hz interference]
[5 points off if output noise not given]
[10 points off for using a HPF, which removes the important earthquake frequencies below 60 Hz]
3e [OK to reverse order of low pass and notch filters]

[4 points off if amplifier not in circuit]

4.1 Case $V_{1}<0$

op-amp has positive output so only D_{1} conducts to close negative feedback loop
$\mathrm{V}_{2}=0$ by virtual ground
$\mathrm{V}_{0}=-\mathrm{V}_{1}$
$\mathrm{V}_{3}=-\mathrm{V}_{1}+0.6 \mathrm{~V}$
[4 points off for $\mathrm{V}_{3}=\mathrm{V}_{1}$] [4 points off for $\mathrm{V}_{3}=0.6 \mathrm{~V}$] [6 points off for $\mathrm{V}_{0}=0$]
[6 points off for $\mathrm{V}_{2} \neq 0$] [6 points off for $\left|\mathrm{V}_{3}\right|>\mathrm{V}_{1}$] [6 points off for $\mathrm{V}_{3}=0$]

4.2 Case $V_{1}>0$

op-amp has negative output so only D_{2} conducts to close negative feedback loop
$V_{2}=0$ by virtual ground
$\mathrm{V}_{0}=0$ due to direct connection to V_{2}
$V_{3}=-0.6 \mathrm{~V}$
[2 points off for $\mathrm{V}_{3}=+0.6 \mathrm{~V}$] [4 points off for $\mathrm{V}_{3}=0$] [6 points off for $\mathrm{V}_{0}= \pm \mathrm{V}_{1}$]
[6 points off for $V_{2} \neq 0$] [6 points off if V_{3} depends on V_{1}]

5a

If the thermistor is $<50 \mathrm{C}, \mathrm{V}_{1}<0, \mathrm{~V}_{2}>0, \mathrm{~V}_{3}=0$
If the thermistor is $>50 \mathrm{C}, \mathrm{V}_{1}>0, \mathrm{~V}_{2}=0, \mathrm{~V}_{3}>0$
The difference amplifier was not needed if the thermistor bridge was set for 0 V output at 50 C . This design makes it more difficult to change the set point, however.

5b

- Initially set point is changed to 50 C , error signal V_{1} is negative and heater is activated
- When temperature gets slightly above 50 C , the error signal V_{1} becomes positive, and the cooler turns on briefly to bring the temperature below 50C
- As chemical reaction proceeds, tanks heats above 50 C , the error signal V_{1} becomes positive, and the cooler turns to hold the temperature at 50 C
- After the chemical reaction completes, error signal V_{1} is negative and heater is activated to maintain 50C

145L FINAL EXAM GRADE STATISTICS

Problem	1	2	3	4	5	Total
Average	31.4	18.0	45.5	26.9	37.0	158.7
rms	4.8	7.7	6.7	12.4	7.6	22.5
Maximum	40	24	56	40	40	200

Total score distribution:

$100-109$	0	$110-119$	1	$120-129$	3
$130-139$	3	$140-149$	4	$150-159$	2
$160-169$	5	$170-179$	4	$180-189$	4
$190-199$	1	200	0		

145L COURSE GRADE STATISTICS

Grade	Undergraduate Scores	Graduate Scores
A+	944	
A	$926,933,939$	924
A-	$892,892,895,901,906,907,908,916$	914
B+	872	877
B	$830,832,837,839,840,841$	
B-	805	
C+	$779,781,798$	
C	765	
C-		
D+		1000
D		905.0
D-	1000	24.8

Bioengineering undergraduate average $=865.8$, $\mathrm{rms}=32.7$
EECS undergraduate average $=869.7, \mathrm{rms}=64.4$

Note: the average grade for the lab report $4,6,12,14$ series was 87.5 and the average grade for the lab report $5,11,13,15$ series was 89.0 . The difference was less than one standard deviation of the difference. No adjustment was necessary.

