Midterm \#1 Solutions - EECS 145L Fall 2002

1a The op-amp equation is $V_{0}=A\left(V_{+}-V_{-}\right)$
If V_{0} is finite and A is infinite, then $V_{+}=V_{-}$(virtual short rule)
Since no current flows in or out of the op-amp inputs

$$
\begin{array}{ll}
\frac{V_{1}-V_{-}}{R_{1}}-\frac{V_{-}-V_{0}}{R_{2}}=0 & \frac{V_{2}-V_{+}}{R_{1}}-\frac{V_{+}}{R_{2}}=0 \\
V_{1} R_{2}-V_{-} R_{2}=V_{-} R_{1}-V_{0} R_{1} & V_{2} R_{2}-V_{+} R_{2}=V_{+} R_{1} \\
V_{-}\left(R_{1}+R_{2}\right)=V_{0} R_{1}+V_{1} R_{2} & V_{+}\left(R_{1}+R_{2}\right)=V_{2} R_{2} \\
V_{0} R_{1}+V_{1} R_{2}=V_{2} R_{2} & G_{ \pm}=V_{0} /\left(V_{2}-V_{1}\right)=R_{2} / R_{1}
\end{array}
$$

[5 points off for correct setup followed by algebraic errors]
[15 points off for incorrect setup]
1b To determine common mode gain, set $\mathrm{V}_{1}=\mathrm{V}_{2}$ in the equation $\frac{V_{2}-V_{1}}{R_{1}}=\frac{V_{0}}{R_{2}}$, and we have
$V_{0}=0$. Since $V_{0}=G_{ \pm}\left(V_{2}-V_{1}\right)+G c\left(V_{1}+V_{2}\right) / 2$ and $V_{0}=0$ for all $V_{1}=V_{2}$, then $G_{c}=0$.
[5 points off for $\mathrm{G}_{\mathrm{c}}=\mathrm{V}_{0} /\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$]
2a Gain-bandwidth product is 100 MHz ; gain is 100 ; bandwidth is 1 MHz .
Instrumentation amplifier input noise $\mathrm{rms}=12.9 \mathrm{nV} \times \operatorname{sqrt}(1 \mathrm{MHz})=12.9 \mu \mathrm{~V}$
Resistor input noise rms $=128.7 \mu \mathrm{~V}$ (from equation sheet)
Total output noise $=100 \times \operatorname{sqrt}\left(128.7^{2}+12.9^{2}\right) \mu \mathrm{V}=12.93 \mathrm{mV}$.
[1 point off for simple addition of noise contributions- same for $2 \mathrm{~b}, 2 \mathrm{c}, 2 \mathrm{~d}$, and 2 e]
[1 point off for not multiplying by the gain to get output voltage- same for $2 \mathrm{~b}, 2 \mathrm{c}, 2 \mathrm{~d}$, and 2e]
2b Gain-bandwidth product is 100 MHz ; gain is 10,000 ; bandwidth is 10 kHz .
Instrumentation amplifier input noise $\mathrm{rms}=12.9 \mathrm{nV}$ x sqrt $(10 \mathrm{kHz})=1.29 \mu \mathrm{~V}$
Resistor input noise $\mathrm{rms}=12.87 \mu \mathrm{~V}$
Total output noise $=10,000 \times$ sqrt $\left(12.87^{2}+1.29^{2}\right) \mu \mathrm{V}=129.3 \mathrm{mV}$.
2c Gain-bandwidth product is 100 MHz ; gain is 10,000 ; bandwidth is 10 kHz .
Instrumentation amplifier input noise $\mathrm{rms}=12.9 \mathrm{nV} \times \operatorname{sqrt}(10 \mathrm{kHz})=1.29 \mu \mathrm{~V}$
Resistor input noise $\mathrm{rms}=12.87 \mu \mathrm{~V} / \operatorname{sqrt}(300 / 75)=6.45 \mu \mathrm{~V}$
Total output noise $=10,000 \times$ sqrt $\left(6.45^{2}+1.29^{2}\right) \mu \mathrm{V}=65.8 \mathrm{mV}$.
2d Gain-bandwidth product is 100 MHz ; gain is 10,000 ; bandwidth is 10 kHz .
Instrumentation amplifier input noise rms $=12.9 \mathrm{nV} \times \operatorname{sqrt}(10 \mathrm{kHz})=1.29 \mu \mathrm{~V}$
Resistor input noise $\mathrm{rms}=12.87 \mu \mathrm{~V} / \mathrm{sqrt}(1 \mathrm{M} \Omega / 500 \mathrm{k} \Omega)=9.10 \mu \mathrm{~V}$
Total output noise $=10,000 \times$ sqrt $\left(9.10^{2}+1.29^{2}\right) \mu \mathrm{V}=91.9 \mathrm{mV}$.
2e Gain-bandwidth product is 100 MHz ; gain is 10,000 ; bandwidth is 10 kHz .
Instrumentation amplifier input noise $\mathrm{rms}=12.9 \mathrm{nV} \times \operatorname{sqrt}(10 \mathrm{kHz})=1.29 \mu \mathrm{~V}$
Single $500 \mathrm{k} \Omega$ resistor input noise rms $=9.10 \mu \mathrm{~V}$ (from 2d)
Total output noise $=10,000 \times$ sqrt $\left(9.10^{2}+9.10^{2}+1.29^{2}\right) \mu \mathrm{V}=129.3 \mathrm{mV}$.
[Note: Since the rms noise is proportional to the square root of the resistance, the noise from two $\mathrm{R} / 2$ resistors in series must be added in quadrature to equal the noise from a single resistor R . Simple addition of noise would make two $\mathrm{R} / 2$ resistors in series noisier than a single resistor R]
2f $\quad \mathrm{T}=300 \mathrm{~K}(12.9 / 128.7)^{2}=3 \mathrm{~K}$
(i.e. To reduce the resistor noise by a factor of 10 from $12.9 \mu \mathrm{~V}$ to $1.29 \mu \mathrm{~V}$, it is necessary to reduce the temperature by a factor of 100)
$3 \mathbf{a}$

3b
The LPF needs to have a gain $G_{1}=0.9$ at $f_{1}=20 \mathrm{kHz}$ and drop to a gain $G_{2}=0.001$ at $f_{2}=52 \mathrm{kHz}$.
$\mathrm{n} \quad \mathrm{f}_{1} / \mathrm{f}_{\mathrm{c}} \quad \mathrm{f}_{1 \mathrm{c}} \quad \mathrm{f}_{2} / \mathrm{f}_{\mathrm{c}} \quad \mathrm{f}_{2 \mathrm{c}}$
$400.83423,9815.623 \quad 9,248 \mathrm{n}$ too low
$6 \quad 0.886 \quad 22,5733.162 \quad 16,445 \mathrm{n}$ too low
$8 \quad 0.913 \quad 21,9062.371 \quad 21,932 \mathrm{n}=8 \mathrm{OK}$
$10 \quad 0.930 \quad 21,5051.995 \quad 26,065 \mathrm{n}$ high, but OK
LPF $\mathrm{n}=8, \mathrm{f}_{\mathrm{c}}=21.91 \mathrm{kHz}$
[3 points off for $f_{c}=20 \mathrm{kHz}$, which would make the gain 0.707 (too low) at 20 kHz]
The HPF needs to have a gain $G_{1}=0.9$ at 100 Hz and drop to a gain $G_{2}=0.001$ at 2 Hz .

$$
\begin{array}{llllll}
\mathrm{n} & \mathrm{f}_{1} / \mathrm{f}_{\mathrm{c}} & \mathrm{f}_{1 \mathrm{c}} & \mathrm{f}_{2} / \mathrm{f}_{\mathrm{c}} & \mathrm{f}_{2 \mathrm{c}} & \\
2 & 1.437 & 69.6 & 0.032 & 62.5 & \mathrm{n}=2 \text { OK } \\
4 & 1.199 & 83.4 & 0.178 & 11.2 & \mathrm{n}=4 \text { high, but OK }
\end{array}
$$

HPF $\mathrm{n}=2, \mathrm{f}_{\mathrm{c}}=65 \mathrm{~Hz}$
[3 points off for $\mathrm{f}_{\mathrm{c}}=100 \mathrm{~Hz}$, which would make the gain 0.707 (too low) at 100 Hz]
The HPF has a gain just a bit below 0.7 at 60 Hz and does not meet the gain requirement of 0.01 . A notch filter with accurate components should provide the necessary low gain.
[3 points off for using a 10 or 12 pole HPF rather than a notch filter to reduce the gain from 0.9 at 100 Hz to 0.01 at 60 Hz - this uses 4 or 5 more op-amps, is inefficient, and has more components that can fail]

145L midterm \#1 grade distribution:

Problem

1	$30.6(6.2 \mathrm{rms})(35 \mathrm{max})$
2	$20.1(7.4 \mathrm{rms})(30 \mathrm{max})$
3	$29.2(9.8 \mathrm{rms})(35 \mathrm{max})$

maximum score $=$	100	
average score $=$	$79.9(\mathrm{rms}=$	$19.4)$
$30-39$	2	F
$40-49$	1	D
$50-59$	0	$\mathrm{C}-$
$60-69$	3	C
$70-79$	3	$\mathrm{~B}-$
$80-89$	6	B
$90-99$	7	A
100	3	$\mathrm{~A}+$

