EECS 145L Final Examination Solutions (Fall 2002)

UNIVERSITY OF CALIFORNIA, BERKELEY

College of Engineering, Electrical Engineering and Computer Sciences Department

- **1a Johnson noise** is produced by the thermal agitation of electrons in a resistor while shot noise arises from statistical fluctuations in the number of electrons per unit time
- **1b** The **sensor** transduces a physical quantity into an electrical signal and the **actuator** transduces an electrical signal into a physical quantity
- 1c The **Thompson emf** is caused by a temperature gradient along the length of a conductor that causes the electrons to move to the colder end while the **Peltier emf** is produced when materials with two different electron mobilities are brought in contact and the electrons move to the material with the lower mobility.
- 1d The thermocouple consists of two dissimilar wires joined at their ends and converts a temperature difference into a potential while the **Peltier thermoelectric heat pump** consists of a doped semiconductor and converts a current into a temperature difference
- 1e The EMG is an electrical signal produced by skeletal muscle and has a random, noisy waveform while the ECG is an electrical signal produced by the heart muscle and consists of a periodic series of pulses.
- 1f A beta ray is a moving electron while an x-ray is an energetic photon (typically 1-100 keV). [4 points off for not mentioning electron vs. photon]
 [4 points off for not mentioning difference in penetrating power]

2a

$$V_{0} = V_{1} \left(\frac{R_{2} + R_{3}}{R_{3}} \right) \left(\frac{1/j\omega C}{1/j\omega C + R_{1}} \right) = V_{1} \left(\frac{R_{2} + R_{3}}{R_{3}} \right) \left(\frac{1}{1 + j\omega R_{1}C} \right) = \left(\frac{R_{2} + R_{3}}{R_{3}} \right) \left(\frac{1 - j\omega R_{1}C}{1 + (\omega R_{1}C)^{2}} \right)$$

$$\left| \frac{V_{0}}{V_{1}} \right| = \left(\frac{R_{2} + R_{3}}{R_{3}} \right) \left(\frac{\sqrt{1 + (\omega R_{1}C)^{2}}}{1 + (\omega R_{1}C)^{2}} \right) = \left(\frac{R_{2} + R_{3}}{R_{3}} \right) \left(\frac{1}{\sqrt{1 + (\omega R_{1}C)^{2}}} \right)$$

2b At 0 Hz, Gain = 10, so $R_2 = 9 \text{ k}\Omega$ and $R_3 = 1 \text{ k}\Omega$ is suitable Gain falls 3 dB to 7.07 at $f = 1/(2\pi R_1 C) = 1 \text{ kHz}$, so $R_1 C = 0.159 \text{ ms}$ Choosing $R_1 = 10 \text{ k}\Omega$, we have $C = 0.0159 \text{ \mu}F = 15.9 \text{ n}F$

2c

$$\frac{V_1}{R_1} = -V_0 \left(1 / R_2 + j \omega C \right)$$

$$\frac{V_0}{V_1} = \frac{-1}{R_1 (1 / R_2 + j \omega C)} = \frac{-R_2}{R_1} \left(\frac{1}{1 + j \omega R_2 C} \right) = \frac{-R_2}{R_1} \left(\frac{1 - j \omega R_2 C}{1 + (\omega R_2 C)^2} \right)$$

EECS 145L Final Examination Solutions (Fall 2002)

$$\left| \frac{V_0}{V_1} \right| = \left(\frac{R_2}{R_1} \right) \left(\frac{\sqrt{1 + (\omega R_2 C)^2}}{1 + (\omega R_2 C)^2} \right) = \frac{\left(R_2 / R_1 \right)}{\sqrt{1 + (\omega R_2 C)^2}}$$

2d At 0 Hz, Gain = 10, so R_1 = 10 k Ω and R_2 = 100 k Ω is suitable Gain falls 3 dB to 7.07 at f = 1/(2 π R₂C) = 1 kHz, so R₂C = 0.159 ms Since R₂ = 100 k Ω , we have C = 0.00159 μ F = 1.59 nF

3a

[6 points off for no instrumentation amplifier]

3b

[6 points off for no instrumentation amplifier]

EECS 145L Final Examination Solutions (Fall 2002)

$$V_{+} - V_{-} = \frac{100}{100 + 100(1 + 0.004T)} - \frac{100}{200} = \frac{1}{2 + 0.004T} - \frac{1}{2}$$
$$= \frac{0.5}{1 + 0.002T} - \frac{0.5}{1} \cdot 0.5 \approx 0.5(1 - 0.002T) - 0.5 = 0.001T \text{(volts)}$$

The bridge sensitivity is 1 mV $/C^{\circ}$ and a gain of 10 is needed to increase the sensitivity to 10 mV/ C° .

3c

3d

3e

 $V_{\text{out}} = V_{\text{tc}} + V_{\text{pt}}$

 $R = 1 k\Omega$ would be suitable

[3 points off for subtracting V_{tc} and V_{pt} rather than adding.]

[1 point off for $V_{\text{out}} = -V_{\text{pt}} - V_{\text{tc}}$]

4a

4b
$$R = 100 \ \Omega$$

$$R_{\rm S} = R + \Delta R$$

V+ – V- =
$$V_b$$
 [$(R + \Delta R)/(\Delta R + 2R)$ - $(R)/(\Delta R + 2R)$] =

$$V_b (\Delta R) / (\Delta R + 200) \approx V_b \Delta R / (2R)$$

4c Voltage across each strain gauge $\approx V_b/2$ (since $\Delta R \ll R$)

Power =
$$(V_b/2)^2/100 \Omega < 0.25 W$$

want highest V_b for sensitivity but power limits $V_b < 10$ volts (5 volts was accepted)

[6 points off for "does not matter"]

[4 points off for 1V and not considering max power]

4d $\Delta T = 1$ °C means $\Delta L/L = 23$ ppm and $\Delta R/R = 46$ ppm.

$$V_{+} - V_{-} = (10 \text{ volts})(23 \text{ ppm}) = 230 \mu\text{V}/^{\circ}\text{C}$$

(115 μ V/°C for 5 V bias)

4e noise is 10 μ V at 1 MHz- Δ T = 1/23 C° = 43 x 10⁻³ °C

noise is 10 nV at 1 Hz $\Delta T = 1/23,000 \text{ C}^{\circ} = 43 \text{ x } 10^{-6} \text{ }^{\circ}\text{C}$

145LFinal Examination score distribution:

70-79	0	80-89	1	90-99	0
100-109	0	110-119	0	120-129	0
130-139	1	140-149	1	150-159	4
160-169	1	170-179	3	180-189	5
190-199	7	200 1			

145L Course Grade Distribution

Grade	Undergraduate Scores	Other Scores	
A+ A	974 950, 952, 960, 972	982	
A– B+ B	918, 923, 923, 927, 938, 940 901, 907 869, 873, 881	913, 923, 932 895	
B –	835, 844		
C+ C C-			
D+ D D-			
\mathbf{F}	463		
Maximum Average rms	1000 892.0 111.5	1000 929.0 32.7	

¹⁹ undergraduates: average = 173.4, rms = 26.0 5 other students (1 graduate, 2 extension, 2 exchange): average = 176.0, rms = 21.0