UNIVERSITY OF CALIFORNIA, BERKELEY

College of Engineering, Electrical Engineering and Computer Sciences Department

1a Johnson noise is produced by the thermal agitation of electrons in a resistor while shot noise arises from statistical fluctuations in the number of electrons per unit time
1b The sensor transduces a physical quantity into an electrical signal and the actuator transduces an electrical signal into a physical quantity
1c The Thompson emf is caused by a temperature gradient along the length of a conductor that causes the electrons to move to the colder end while the Peltier emf is produced when materials with two different electron mobilities are brought in contact and the electrons move to the material with the lower mobility.
1d The thermocouple consists of two dissimilar wires joined at their ends and converts a temperature difference into a potential while the Peltier thermoelectric heat pump consists of a doped semiconductor and converts a current into a temperature difference
1e The EMG is an electrical signal produced by skeletal muscle and has a random, noisy waveform while the ECG is an electrical signal produced by the heart muscle and consists of a periodic series of pulses.
1f A beta ray is a moving electron while an $\mathbf{x}-$ ray is an energetic photon (typically 1-100 keV).
[4 points off for not mentioning electron vs. photon]
[4 points off for not mentioning difference in penetrating power]

2a

$$
\begin{array}{r}
V_{0}=V_{1}\left(\frac{R_{2}+R_{3}}{R_{3}}\right)\left(\frac{1 / j \omega C}{1 / j \omega C+R_{1}}\right)=V_{1}\left(\frac{R_{2}+R_{3}}{R_{3}}\right)\left(\frac{1}{1+j \omega R_{1} C}\right)=\left(\frac{R_{2}+R_{3}}{R_{3}}\right)\left(\frac{1-j \omega R_{1} C}{1+\left(\omega R_{1} C\right)^{2}}\right) \\
\left|\frac{V_{0}}{V_{1}}\right|=\left(\frac{R_{2}+R_{3}}{R_{3}}\right)\left(\frac{\sqrt{1+\left(\omega R_{1} C\right)^{2}}}{1+\left(\omega R_{1} C\right)^{2}}\right)=\left(\frac{R_{2}+R_{3}}{R_{3}}\right)\left(\frac{1}{\sqrt{1+\left(\omega R_{1} C\right)^{2}}}\right)
\end{array}
$$

2b At 0 Hz , Gain $=10$, so $R_{2}=9 \mathrm{k} \Omega$ and $R_{3}=1 \mathrm{k} \Omega$ is suitable
Gain falls 3 dB to 7.07 at $\mathrm{f}=1 /\left(2 \pi \mathrm{R}_{1} \mathrm{C}\right)=1 \mathrm{kHz}$, so $\mathrm{R}_{1} \mathrm{C}=0.159 \mathrm{~ms}$
Choosing $\mathrm{R}_{1}=10 \mathrm{k} \Omega$, we have $\mathrm{C}=0.0159 \mu \mathrm{~F}=15.9 \mathrm{nF}$

2 c

$$
\begin{gathered}
\frac{V_{1}}{R_{1}}=-V_{0}\left(1 / R_{2}+j \omega C\right) \\
\frac{V_{0}}{V_{1}}=\frac{-1}{R_{1}\left(1 / R_{2}+j \omega C\right)}=\frac{-R_{2}}{R_{1}}\left(\frac{1}{1+j \omega R_{2} C}\right)=\frac{-R_{2}}{R_{1}}\left(\frac{1-j \omega R_{2} C}{1+\left(\omega R_{2} C\right)^{2}}\right)
\end{gathered}
$$

S. Derenzo

EECS 145L Final Examination Solutions (Fall 2002)

$$
\left|\frac{V_{0}}{V_{1}}\right|=\left(\frac{R_{2}}{R_{1}}\right)\left(\frac{\sqrt{1+\left(\omega R_{2} C\right)^{2}}}{1+\left(\omega R_{2} C\right)^{2}}\right)=\frac{\left(R_{2} / R_{1}\right)}{\sqrt{1+\left(\omega R_{2} C\right)^{2}}}
$$

2d At 0 Hz , Gain $=10$, so $R_{1}=10 \mathrm{k} \Omega$ and $R_{2}=100 \mathrm{k} \Omega$ is suitable
Gain falls 3 dB to 7.07 at $\mathrm{f}=1 /\left(2 \pi \mathrm{R}_{2} \mathrm{C}\right)=1 \mathrm{kHz}$, so $\mathrm{R}_{2} \mathrm{C}=0.159 \mathrm{~ms}$
Since $\mathrm{R}_{2}=100 \mathrm{k} \Omega$, we have $\mathrm{C}=0.00159 \mu \mathrm{~F}=1.59 \mathrm{nF}$

3a

[6 points off for no instrumentation amplifier]

3b

Instrumentation amplifier (gain 10)
[6 points off for no instrumentation amplifier]

EECS 145L Final Examination Solutions (Fall 2002)

$$
\begin{aligned}
V_{+}-V_{-} & =\frac{100}{100+100(1+0.004 T)}-\frac{100}{200}=\frac{1}{2+0.004 T}-\frac{1}{2} \\
& =\frac{0.5}{1+0.002 T}-\frac{0.5}{1} 0.5 \approx 0.5(1-0.002 T)-0.5=0.001 T(\text { volts })
\end{aligned}
$$

The bridge sensitivity is $1 \mathrm{mV} / \mathrm{C}^{\circ}$ and a gain of 10 is needed to increase the sensitivity to $10 \mathrm{mV} / \mathrm{C}^{\circ}$.
3c

3d

3 e

$\mathrm{R}=1 \mathrm{k} \Omega$ would be suitable
[3 points off for subtracting V_{tc} and V_{pt} rather than adding.]
[1 point off for $V_{\text {out }}=-V_{\mathrm{pt}}-V_{\mathrm{tc}}$]

4a

4b $R=100 \Omega$
$R_{\mathrm{S}}=\mathrm{R}+\Delta R$
$\mathrm{V}+-\mathrm{V}-=V_{\mathrm{b}}[(\mathrm{R}+\Delta \mathrm{R}) /(\Delta \mathrm{R}+2 R)-(\mathrm{R}) /(\Delta \mathrm{R}+2 R)]=$
$V_{\mathrm{b}}(\Delta \mathrm{R}) /(\Delta \mathrm{R}+200) \approx V_{\mathrm{b}} \Delta \mathrm{R} /(2 \mathrm{R})$

4c Voltage across each strain gauge $\approx V_{\mathrm{b}} / 2($ since $\Delta R \ll R)$
Power $=\left(V_{\mathrm{b}} / 2\right)^{2} / 100 \Omega<0.25 \mathrm{~W}$
want highest V_{b} for sensitivity but power limits $V_{\mathrm{b}}<10$ volts (5 volts was accepted)
[6 points off for "does not matter"]
[4 points off for 1 V and not considering max power]

4d $\Delta \mathrm{T}=1{ }^{\circ} \mathrm{C}$ means $\Delta \mathrm{L} / \mathrm{L}=23 \mathrm{ppm}$ and $\Delta R / R=46 \mathrm{ppm}$.
$\mathrm{V}_{+}-\mathrm{V}_{-}=(10$ volts $)(23 \mathrm{ppm})=230 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
($115 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for 5 V bias)
4 e noise is $10 \mu \mathrm{~V}$ at $1 \mathrm{MHz}-\Delta \mathrm{T}=1 / 23 \mathrm{C}^{\circ}=43 \times 10^{-3}{ }^{\circ} \mathrm{C}$ noise is 10 nV at $1 \mathrm{~Hz} \Delta \mathrm{~T}=1 / 23,000 \mathrm{C}^{\circ}=43 \times 10^{-6}{ }^{\circ} \mathrm{C}$

EECS 145L Final Examination Solutions (Fall 2002)

145LFinal Examination score distribution:

$70-79$	0	$80-89$	1	$90-99$	0
$100-109$	0	$110-119$	0	$120-129$	0
$130-139$	1	$140-149$	1	$150-159$	4
$160-169$	1	$170-179$	3	$180-189$	5
$190-199$	7	200			

19 undergraduates: average $=173.4, \mathrm{rms}=26.0$
5 other students (1 graduate , 2 extension, 2 exchange) : average $=176.0, \mathrm{rms}=21.0$

145L Course Grade Distribution

Grade	Undergraduate Scores	Other Scores
A+	974	982
A	950, 952. 960, 972	
A-	918, 923, 923, 927, 938, 940	913, 923, 932
B+	901, 907	895
B	869, 873, 881	
B-	835, 844	
$\begin{aligned} & \mathbf{C}+ \\ & \mathbf{C} \\ & \mathbf{C}- \end{aligned}$		
$\begin{aligned} & \text { D+ } \\ & \text { D } \\ & \mathbf{D}- \end{aligned}$		
F	463	
Maximum	1000	1000
Average	892.0	929.0
rms	111.5	32.7

