Midterm \#2 Solutions - EECS 145L Fall 2001

1a Technical requirements of a ground fault interrupter circuit:
(i) open both current carrying power conductors (hot and neutral) when the the difference in their currents exceeds 5 mA
(ii) provide a reset button
(iii) provide a test button
[5 points off for describing the circuit breaker]
[1 points off each for missing the reset or test features]
1b How the ground fault interrupter circuit functions:
(i) the difference in currents is converted into a 60 Hz voltage using a differential transformer
(ii) this voltage is rectified and amplified
(iii) the resulting dc voltage trips two relays which hold both conductors open until reset
(iv) the test button sends a 5 mA current through differential transformer
[1 point off for no test button]
2a Since $R_{2} /\left(R_{1}+R_{2}\right)=R_{3} /\left(R_{\mathrm{T}}+R_{3}\right), R_{2}=R_{3}$, and $R_{\mathrm{T}}=10 \mathrm{k} \Omega$ at $20^{\circ} \mathrm{C}$ the solution is $R_{1}=10 \mathrm{k} \Omega$.
2b $\quad \mathrm{P}=V_{\mathrm{T}}{ }^{2} / R=(0.5 \text { volts })^{2} /(10 \mathrm{k} \Omega)=25 \mu \mathrm{~W}$
2 c Amplifier output of 0.05 volts means a bridge output $\mathrm{V}_{+}-\mathrm{V}_{-}=0.01$ volts. Using the bridge equation (supplied on the equation sheets), we have RT $=(10000 \Omega) *(10000 \Omega-0.01 * 20,000$ $\Omega) /(10000 \Omega+0.01 * 20,000 \Omega)=9608 \Omega$
[1 point off for not dividing by the amplifier gain]
[3 points off for assuming a linear response from $0{ }^{\circ} \mathrm{C}$ and 0Ω to $20^{\circ} \mathrm{C}$ and $10 \mathrm{k} \Omega$]
2d $T=20^{\circ} \mathrm{C}+(9608 \Omega-10000 \Omega) /\left(-300 \Omega / \mathrm{C}^{\circ}\right)=21.3^{\circ} \mathrm{C}$
2e $\quad V_{T}=1-10000 \Omega /(10000 \Omega+9608 \Omega)=0.490$ volts
$P=(0.490 \text { volts })^{2} /(9608 \Omega)=24.99 \mu \mathrm{~W}(25 \mu \mathrm{~W}$ was accepted for full credit $)$
2f Dissipation coefficient $=25 \mu \mathrm{~W} /\left(21.3^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)=19 \mu \mathrm{~W} /{ }^{\circ} \mathrm{C}$

3a

Midterm \#2 Solutions - EECS 145L Fall 2001

3b

[3 points off if bridge is drawn but gauges are reversed]
3c $\quad V_{0}=\frac{R_{P}}{R_{P}+R_{N}}-\frac{R_{N}}{R_{P}+R_{N}}=\frac{\left(R+\Delta R_{P}\right)-\left(R+\Delta R_{N}\right)}{2 R+\Delta R_{P}+\Delta R_{N}}$

$$
V_{0}=\frac{\Delta R_{P} / R-\Delta R_{N} / R}{2+\Delta R_{P} / R+\Delta R_{N} / R}=\frac{200 \Delta L / L}{2+20,000 \Delta L / L)^{2}}=\frac{100 \Delta L / L}{1+10,000 \Delta L / L)^{2}}
$$

[a common error was to write down the bridge equation and then plug in terms like

$$
\left.\mathrm{R}_{\mathrm{p}}=\mathrm{R}_{0}\left(100 \Delta \mathrm{~L} / \mathrm{L}+10,000(\Delta \mathrm{~L} / \mathrm{L})^{2}\right) \quad\right]
$$

$3 \mathbf{d}$ For $V_{S}=1$ volt, bridge sensitivity is 0.1 mV per μ strain
3 e The Johnson noise in a single $10 \mathrm{k} \Omega$ resistor is given by

$$
V_{J \mathrm{rms}}=1.29 \times 10^{-10} \mathrm{~V}^{-1 / 2} \mathrm{~Hz}^{-1 / 2} \operatorname{sqrt}(10 \mathrm{k} \Omega 16 \mathrm{~Hz})=1.29 \times 10^{-10} \times 400 \mathrm{~V}=5.16 \times 10^{-8} \mathrm{~V}
$$

The bias and ground points are at a fixed voltage, so the Johnson noise in two of the resistors adds a Johnson noise voltage in quadrature to V - and the Johnson noise in the other two resistors adds a Johnson noise in quadrature to $\mathrm{V}+$. (Note that the bridge equation describes how external average voltages are distributed to produce V - and $\mathrm{V}+$)
$V_{-\mathrm{rms}}=\sqrt{V_{J \mathrm{rms}}^{2}+V_{J \mathrm{rms}}^{2}} \quad V_{+\mathrm{rms}}=\sqrt{V_{J \mathrm{Jms}}^{2}+V_{J r \mathrm{~ms}}^{2}}$
The Johnson noise in $V_{0}=V_{+}-V_{-}$is given by adding the noise of the individual components in quadrature:
$V_{0 r m s}=\sqrt{V_{+r m s}^{2}+V_{-r m s}^{2}}=\sqrt{4 V_{\text {Jrms }}^{2}}=2 V_{\text {Jrms }}$
This is $0.103 \mu \mathrm{~V} \mathrm{rms}$, which corresponds to $\Delta \mathrm{L} / \mathrm{L} \approx 10^{-9} \mathrm{rms}$.
[2 points off for giving the rms equivalent strain due to the Johnson noise in only one resistor]
[3 points off for giving the rms voltage noise from one resistor but not relating it to rms strain]
[4 points off for writing down the Johnson noise equation and using it improperly or incompletely]

145L midterm \#2 undergraduate grade distribution:

Problem

1	$13.0(20 \mathrm{max})$
2	$34.9(40 \mathrm{max})$
3	$29.6(40 \mathrm{max})$
total	$77.4(100 \mathrm{max})$

$31-40$		
$41-50$	1	D
$51-60$	1	C
$61-70$	3	B-
$71-80$	8	B
$81-90$	4	A
$91-100$	3	A+

