Midterm \#1 Solutions - EECS 145L Fall 2001

$\mathbf{1}$		Inverting op-amp circuit amplifier	Non-inverting op-amp circuit amplifier	Differential op- amp circuit amplifier	Instrumentation amplifier
High $\mathrm{Z}_{\text {in }}$	YES	NO	YES	NO	YES
Differential input	YES	NO	NO	YES	YES
Defined gain over a frequency band	NO	YES	YES	YES	YES

[1 point off for each wrong answer]

2 a
Op-amp equation $V_{0}=-A V_{3}$
Kirchhoff's current law at node $V_{2}: \frac{V_{1}-V_{2}}{100 \mathbb{\Omega}}+\frac{V_{3}-V_{2}}{1 \Omega}+\frac{0-V_{2}}{1 \mathbb{\Omega}}=0$
$V_{1}=V_{2}+10 \sigma_{2}-10 \sigma_{3}+10 \sigma_{2}=20 \mathbb{V}_{2}-10 \sigma_{3}$
Kirchhoff's current law at node $V_{3}: \frac{V_{2}-V_{3}}{1 \mathrm{k} \%}+\frac{V_{0}-V_{3}}{100 \mathrm{k} \%}=0$
$10 \sigma_{2}=10 \sigma_{3}+V_{3}-V_{0}=(101+A) V_{3}$
$V_{1}=\left[\frac{201(101+A)}{100}-100\right] V_{3}=\left[\frac{1030 \# 201 A}{100}\right] V_{3}$
$V_{1}=\left[201-\frac{100(100)}{101+A}\right] V_{2}=\left[\frac{1030 \# 201 A}{101+A}\right] V_{2}$
$V_{2}=\frac{(101+A) V_{1}}{1030 \# 201 A} \approx \frac{1+A / 100}{100+2 A} V_{1}$
$V_{3}=\frac{10 \sigma_{1}}{1030 \# 210 \mathrm{~A}} \approx \frac{V_{1}}{100+2 \mathrm{~A}}$
$V_{0}=\frac{-100 A V_{1}}{1030 \# 201 A} \approx \frac{-A V_{1}}{100+2 A}$
[7 points off for setting up the first three equations but not solving them]
[10 points off for following through with the erroneous starting equation $V_{2}=V_{1} / 101$]

2b
$\mathrm{f}=\mathbf{1 0} \mathbf{~ H z}, \mathrm{A}=10^{5}$
$\mathrm{V}_{2} \approx \mathrm{~V}_{1} / 201 \approx 5 \times 10^{-3} \mathrm{~V}_{1} \quad \mathrm{~V}_{3} \approx 100 \mathrm{~V}_{1} /\left(201 \times 10^{5}\right) \approx 5 \times 10^{-6} \mathrm{~V}_{1} \quad \mathrm{~V}_{0} \approx-0.5 \mathrm{~V}_{1}$
$\mathbf{f}=\mathbf{1} \mathbf{M H z}, \mathrm{A}=1$
$\mathrm{V}_{2} \approx 100 \mathrm{~V}_{1} / 10000 \approx 10^{-2} \mathrm{~V}_{1} \quad \mathrm{~V}_{3} \approx 100 \mathrm{~V}_{1} / 10000 \approx 10^{-2} \mathrm{~V}_{1} \quad \mathrm{~V}_{0} \approx-10^{-2} \mathrm{~V}_{1}$
[15 points off for determining As only]
[2 points off if some answers off by $2 x$]
To solve 2 b without using 2 a :
At $10 \mathrm{~Hz}, \mathrm{~A}=10^{5}$ is larger than the closed loop gain of 100 and the virtual short rule gives
$\mathrm{V}_{2}=\mathrm{V}_{1} 500 \Omega / 100 \mathrm{k} \Omega=5 \times 10^{-3} \mathrm{~V}_{1} \quad \mathrm{~V}_{0}=-100 \mathrm{~V}_{2}=-0.5 \mathrm{~V}_{1} \quad \mathrm{~V}_{3} \approx-\mathrm{V}_{0} / 10^{5} \approx 5 \times 10^{-6} \mathrm{~V}_{1}$
At $1 \mathbf{M H z}, \mathrm{~A}=1$, negative feedback fails, and the circuit gain is limited by the op-amp gain of -1
$V_{0}=-V_{3}$
$\mathrm{V}_{2} \approx \mathrm{~V}_{3}$ (voltage drop across $1 \mathrm{k} \Omega$ resistor is 1% of the $2 \mathrm{~V}_{3}$ voltage drop across $100 \mathrm{k} \Omega$ resistor)
$\mathrm{V}_{2}=\mathrm{V}_{1} 1 \mathrm{k} \Omega / 100 \mathrm{k} \Omega \approx 10^{-2} \mathrm{~V}_{1} \quad \mathrm{~V}_{3} \approx 10^{-2} \mathrm{~V}_{1} \quad \mathrm{~V}_{0}=-10^{-2} \mathrm{~V}_{1}$

Midterm \#1 Solutions - EECS 145L Fall 2001

3a The lower corner frequency is given by the RC time constant of the high-pass filter

$$
\mathrm{f}_{\mathrm{c}}=1 /(2 \pi \mathrm{RC})=1 /\left(2 \pi 0.16 \times 10^{-3}\right) \approx 1 \mathrm{kHz}
$$

[1 point off for 6.25 kHz]
3b The frequency where the gain of the buffer amplifier falls to 0.5 is the frequency where A falls to 1 which is 1 MHz . [2 MHz was also allowed].
[4 points off if LPF formula used to get 500 to 2000 Hz]

[5 points off if gain does not decrease as $1 / \mathrm{f}$ above 1 MHz]
[5 points off if gain does not increase as f below the f_{c} value answer in 3a]

4

[2 points off for overall sign error, e.g. $V_{0}=-V_{1}-V_{2}+V_{3}+V_{4}$]
[2 points off for a working circuit that uses three op amps]
[5 points off for using two differential amps to take $V_{1}-V_{3}$ and $V_{2}-V_{4}$ and then connecting the output directly together]
[5 points off for one summing amp plus two resistors connected to the + input of a buffer amp; this input is not a summing point]
[2 points off for the following circuit with resistor values shown because of the overall sign error, e.g. $\mathrm{V}_{0}=$ $\left.-V_{1}-V_{2}+V_{3}+V_{4}\right]$
[4 points off for the following circuit with no resistor values shown]

145L midterm \#1 grade distribution:

Problem	
1	$13.4(15 \mathrm{max})$
2	$22.5(40 \mathrm{max})$
3	$17.7(25 \mathrm{max})$
4	$17.3(20 \mathrm{max})$

maximum score $=$	100	
average score $=$	70.9	
$31-40$	1	F
$41-50$	0	D
$51-60$	4	C
$61-70$	8	$\mathrm{C}-\mathrm{B}$
$71-80$	6	B
$81-90$	5	$\mathrm{~B}-\mathrm{A}$
$91-95$	2	A
$96-100$	0	

