\qquad
UNIVERSITY OF CALIFORNIA, BERKELEY
Electrical Engineering and Computer Sciences Department
EECS 145L Electronic Transducer Lab
MIDTERM \#1 (100 points maximum)
October 1, 2001
(Closed book, calculators OK, equation sheet provided) (You will not receive full credit if you do not show your work)

PROBLEM 1 (15 points)

In the table below, fill in YES or NO in each of the 15 boxes

	Op Amp	Inverting op-amp circuit amplifier	Non-inverting op-amp circuit amplifier	Differential op- amp circuit amplifier	Instrumentation amplifier
High $\mathrm{Z}_{\text {in }}$					
Differential input					
Defined gain over a frequency band					

PROBLEM 2 (40 points)

In the circuit shown below, assume the following:

- The op-amp open-loop gain $A=10^{6} \mathrm{~Hz} / f$ for $f>10 \mathrm{~Hz}$.
- Op-amp input currents are zero
- Output offset can be neglected
- The wave generator produces a pure sinewave of frequency f and has zero output impedance

2a (20 points) Derive expressions for V_{0}, V_{3}, and V_{2} as a function of input V_{1}, frequency f and open-loop gain A.

2b (20 points) Evaluate the above expressions at $f=10 \mathrm{~Hz}$ and 1 MHz . Note: To simplify the calculation, you can neglect small terms that change the answer by less than a few percent.
\qquad

PROBLEM 3 (25 points)

Consider the high-pass one-pole filter circuit shown below.

The op amp specifications are

- Infinite input impedance, no input leakage currents
- Above 10 Hz , the open-loop gain A varies as $1 /$ frequency and reaches unity gain at $10^{6} \mathrm{~Hz}$ 3a (5 points) What is the $3-\mathrm{dB}$ lower corner frequency of the circuit?

3b (5 points) At what upper frequency does the gain drop to 0.5 ?

3c (20 points) Sketch the Bode gain plot below.

PROBLEM 4 (20 points)

Design a circuit that uses two op-amps to combine four inputs as follows:

$$
V_{0}(t)=V_{1}(t)+V_{2}(t)-V_{3}(t)-V_{4}(t)
$$

Sketch your circuit below:

