1a

$$V_{0} = (k / f)(V_{1} - V_{2}) \qquad V_{2} = V_{0}R_{1} / (R_{1} + R_{2})$$

$$V_{0} = (k / f)V_{1} - (k / f)V_{0}R_{1} / (R_{1} + R_{2})$$

$$V_{0}[1 + (k / f)R_{1} / (R_{1} + R_{2})] = V_{1}(k / f)$$

$$G = V_{0} / V_{1} = \frac{k / f}{1 + (k / f)R_{1} / (R_{1} + R_{2})} = \frac{1}{(f / k) + R_{1} / (R_{1} + R_{2})} = \frac{R_{1} + R_{2}}{(f / k)(R_{1} + R_{2}) + R_{1}}$$
[10 points off for $G = (R_{1} + R_{2})/R_{1}$]

2b

The LPF needs to have a gain of 0.9 at 20 kHz and drop to a gain of 0.001 at 52 kHz (frequency ratio 2.6). The Butterworth LPF table shows that an **8th order low pass Butterworth filter** has $f/f_c = 0.913$ at a gain of 0.9 and $f/f_c = 2.371$ at a gain of 0.001. This is a frequency ratio of 2.6, as required. A smaller order number has a frequency ratio that is too small and a higher order number would be excessive. The corner frequency $f_c = 20$ kHz/0.913 = 21.9 kHz.

Midterm #1 Solutions - EECS 145L Fall 2000

[n = 10 or 12 was also accepted]

The HPF needs to have a gain of 0.9 at 100 Hz and drop to a gain of 0.001 at 2 Hz (frequency ratio 50). The Butterworth HPF table shows that a **second order high pass Butterworth filter** has $f/f_c = 1.437$ at a gain of 0.9 and $f/f_c = 0.032$ at a gain of 0.001. This is a frequency ratio of 45, and meets the requirement. A HPF of order 1 would not meet the requirement and a higher order filter would be excessive. The corner frequency $f_c = 100$ Hz/1.437 = 70 Hz.

[n = 4 was also accepted]

The HPF has a gain just a bit below 0.7 at 60 Hz and does not meet the gain requirement of 0.01. A notch filter with accurate components should provide the necessary low gain.

[3 points off for using a 10 or 12 pole HPF rather than a notch filter to reduce the gain from 0.9 at 100 Hz to 0.01 at 60 Hz- this uses 4 or 5 more op-amps and is inefficient and expensive]

3a

To measure common mode gain, connect both inputs of the instrumentation amplifier to a sine wave generator and measure V_{in} and V_{out} vs frequency. $G_c = V_{out}/V_{in}$.

To measure differential gain, ground one input and connect the other to a sine wave generator and measure V_{in} and V_{out} vs frequency. The differential input is V_{in} and the common mode is $V_{in}/2$. From $V_{out} = G_{\pm}V_{in} + G_c V_{in}/2$ and G_c measured above, compute G_{\pm} .

[4 points off for not providing two inputs]

[1 point off for not correcting for the common mode input $V_{in}/2$. Note that the common mode gain couples both the positive and negative inputs equally to the output.]

$$V_0 = G_+ V_+ + G_- V_- = G_{\pm} (V_+ - V_-) + G_c (V_+ + V_-) / 2$$

$$G_+ = G_{\pm} + G_c / 2$$

If $V_- = 0$, then $V_0 = (G_{\pm} + G_c / 2)V_+$

An alternative method would be to send V_{in} through inverting and a noninverting op-amp circuits to generate the pure differential inputs V_{in} and $-V_{in}$.

3b

[3 points off for graph but no equation]

145L midterm #1 grade distribution:

Problem

1	25.3 (30 max)
2	31.1 (35 max)
3	25.5 (35 max)

maximum score =	100	
average score =	81.9	
31-40	0	
41-50	2	D
51-60	1	С
61-70	0	
71-80	2	B-
81-90	5	В
91-95	0	
96-100	5	А