
University of California College of Engineering Department of Electrical Engineering and Computer sciences

EE140	Midterm Exam	Mar. 13, 2003
Name: Solution	SID#	:
grad	undergr	ad
 Closed book except for 1 - 8. There are two problems. Be 	5" x 11" sheet of your notes. sure to show all your work to rea	ceive full or partial credit.
	1	
	2	
	Total	

- 1) In the amplifier of Fig. 1, assume all NMOS devices have $V_T = V_{T_n}$, and all PMOS devices have $V_T = V_{T_p}$. You may neglect body effect. Further, assume all devices are minimum length, and are characterized by k'_n , λ_n and k'_p , λ_p for NMOS and PMOS devices respectively.
 - a) (10 pts.) For the nominal input $V_{i_1} = V_{i_2} = V_{DD}$, determine the circuit operating point. Fill in the data below in terms of symbolic parameters. V_{T_n} , V_{T_p} , k'_n , k'_p , λ_n , λ_p , I_B , $\left(\frac{W}{L}\right)$'s, etc.

I_{D_1}	IB	Δ'
I_{D_2}	IB	
V_{S_1}	Vob-VTn-DV12	
V_{S_2}	VDO- VTN- DV1/2	DV3,4
V_{D_3}	UDD-VIN-BU,, - (VI)-(BU;,)	
V_0	= VD3 (Symmetry!)	

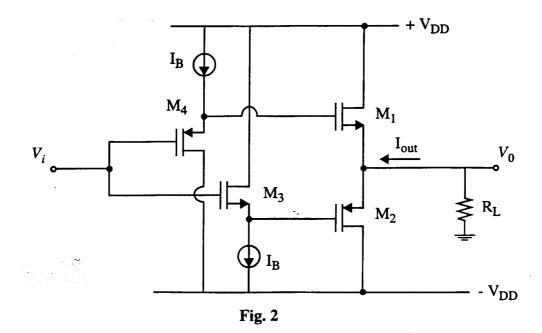
$$\Delta V_{1,2} = \sqrt{\frac{2 I_B}{k_n' \left(\frac{w}{L}\right)_{\xi, Z}}}$$

b) (10 pts.)

Determine the common mode input range, consistent with keeping all devices active.

c) (10 pts.)

If $V_{i_2} = V_{DD}$, determine the output range, consistent with keeping all devices active.


d) (10 pts.) For the operating point with $V_{I_1} = V_{I_2} = V_{DD}$, determine the differential mode circuit $G_{\rm m}$, i.e. $G_{m_{\rm diff}} = \frac{i_{out}}{(v_{i_1} - v_{i_2})}$.

e) (10 pts.)

For the operating point with $V_{i_1} = V_{i_2} = V_{DD}$, determine R_{out} .

f) (10 pts.)

Determine the common mode gain, i.e. $A_{v-cm} = \frac{v_0}{v_{in}} \Big|_{v_{i_1} = v_{i_2} = v_{in}}$

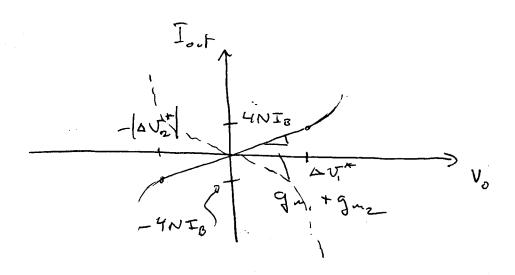
2) For the circuit of Fig. 2, take the following: $\left(\frac{W}{L}\right)_1 = N\left(\frac{W}{L}\right)_3$; $\left(\frac{W}{L}\right)_2 = N\left(\frac{W}{L}\right)_4$; $k'_n\left(\frac{W}{L}\right)_3 = k'_p\left(\frac{W}{L}\right)_4$. Neglect body effect and channel length modulation.

Assume $V_{T_n} = V_{T_{\hat{p}}}$.

a) (10 pts.) For $V_i = 0$ and $R_L = \infty$, determine V_0 , I_{D_1} and I_{D_2} .

V_0	V2= 0
I_{D_1}	NIB
I_{D_2}	NIB

b) (10 pts.) For the bias condition determined in part (a), determine the circuit G_m .


gm, + gmz

$$\Delta V_{i} = \sqrt{\frac{2NI_{B}}{k_{n}^{\prime}(\frac{w}{L})_{i}}}$$

c) (10 pts.)
For the bias condition determined in part (a), determine R_{out}.

d) (10 pts.)

Take $V_i = 0$ and $R_L = \infty$. Determine the large signal I_{out} - V_0 curve obtained by applying an appropriate test source at the circuit output.

$$g_{\perp}(\mathcal{V}_{o}) = k'_{n}(\frac{w}{L}), \Delta V_{i}(\mathcal{V}_{o}) = k'_{n}(\frac{w}{L}), (\Delta V_{i}^{\dagger} - \mathcal{V}_{o})$$

$$\mathcal{V}_{o} \leq \Delta V_{i}^{\dagger}$$

$$\Im_{m_{2}}(v_{0}) = k_{p}(\frac{w}{L})_{2} \Delta v_{2}(v_{0}) = k_{p}(\frac{w}{L})_{2} \left(\Delta v_{2}^{*} + v_{0}\right) \\
- |\Delta v_{2}^{*}| \leq v_{0}$$

$$V_0 > \Delta V_1^{\dagger} \Rightarrow g_{m_1} = 0 \quad (cut-vft)$$

$$g_{m_2}$$