University of California, Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

EECS 130 Integrate Circuit Devices Midterm Exam #2 Part one (35% of total point weighting) March 14, 1996

Two Problems. One $8\frac{1}{2}$ " x 11 " sheet allowed for formula reference.

- 1. In a forward biased pn junction diode, $L_{n, p} \ll$ device length.
 - (a) Write down the expression for stored charge on both sides of the pn junction, Q_n and Q_p, in terms of device parameters such as N_D, N_A, V_A,...etc. (3 points)
 - (b) Rewrite the expression of current density in terms of Q_n and Q_p . (3 points)

- (c) Interpret the physical meaning of the expression you derived in part (b). (2 points)
- (d) How does the current change (increase or decrease) at a given forward bias as temperature increase? Demonstrate your answer with equations (use the back of this sheet if necessary). (4 points)

- 2. A silicon step function has $N_A = 5 \times 10^{15} \text{ cm}^{-3}$ and $N_D = 10^{15} \text{ cm}^{-3}$, $D_N = 34 \text{ cm}^2/\text{sec}$, $D_P = 12 \text{ cm}^2/\text{sec}$, $n_i = 10^{10} \text{ cm}^{-3}$, kT = 0.026 eV, $A = 10^{-4} \text{ cm}^2$, $\tau_p = 0.4 \text{ }\mu\text{s}$, and $\tau_n = 0.1 \text{ }\mu\text{s}$. Calculate.
 - (a) the reverse saturation current due to holes. (3 points)

(b) the reverse saturation current due to electrons. (3 points)

(c) reverse saturation current, I_0 . (2 points)

(d) If $V_A = \phi/2$, calculate the

i. hole concentration at x_n and injected hold concentration at x_n . (3 points)

ii. Hole concentration at $x' = L_p/2$.

iii. Electron concentration at $-x_p$ and injected electron concentration at $-x_p$. (3 points)

iv. Electron concentration at x'' = $L_n/2$. (3 points)

(e) Calculate the total injected hole charge for $V_A = \phi/2$. (3 points)