UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

EECS 130 Spring 2009 Professor Chenming Hu

Midterm I

Name: _____

Closed book. One sheet of notes is allowed. There are ten pages of this exam including this page.

Problem 1	30
Problem 2	20
Problem 3	35
Problem 4	15
Total	100

Physical Constants

Electronic charge	q	1.602×10 ⁻¹⁹ C
Permittivity of vacuum	\mathcal{E}_0	$8.845 \times 10^{-14} \text{ F cm}^{-1}$
Relative permittivity of silicon	$\epsilon_{ m Si}/\epsilon_0$	11.8
Boltzmann's constant	k	$8.617 \ge 10^{-5} \text{ eV}/\text{ K or}$
		1.38×10 ⁻²³ J K ⁻¹
Thermal voltage at $T = 300$ K	kT/q	0.026 V
Effective density of states	N _c	$2.8 \times 10^{19} \text{ cm}^{-3}$
Effective density of states	$N_{\rm v}$	$1.04 \text{ x } 10^{19} \text{ cm}^{-3}$
Silicon Band Gap	E _G	1.1 eV
Intrinsic carrier concentration of Si at 300K	n _i	10^{10}cm^{-3}

Minority carrier concentration versus position plots are often used to describe the situation inside semiconductor devices. A linear plot of the excess minority carrier concentration on the N-side of two ideal P^+ -N diodes maintained at room temperature is pictured below. The P-side doping (N_a), N-side doping (N_d) and the cross-sectional area are the same in both diodes. Assume low-level injection conditions prevail.

(a) Are both diodes forward, zero, or reverse biased? [3pts]

Forward bias

(b) Which diode has higher bias? Briefly explain. [5pts]

Diode A.
$$p'_{N}(0) = p_{N0} \left(e^{\frac{qV}{kT}} - 1 \right)$$
, since $p'_{NA}(0) > p'_{NB}(0)$ and $p_{N0A} = p_{N0B} \rightarrow V_A > V_B$

(c) Which diode has higher minority carrier lifetime on the N-side? Assume that the hole mobility of diode A and B are the same. Briefly explain. [5pts]

Diode B. L = $\sqrt{D\tau}$, since L_B > L_A and D_A = D_B ($\mu_A = \mu_B$) $\rightarrow \tau_B > \tau_A$

(d) Which diode has higher current? Briefly explain. [5pts]

Diode A.
$$J_p = -qD\frac{dp'}{dx}$$
, since $D_A = D_B$ and $\left|\frac{dp_A'}{dx}\right| > \left|\frac{dp_B'}{dx}\right| \to J_{pA} > J_{pB}$

(e) Given the plot of p'_N in dashed lines in the following figure, add n'_N in solid lines for diode A and B and label them. [4pts]

(f) Qualitatively draw J_p and J_n for diode A and B. Label them clearly. [8pts]

(a) Given below is a menu consisting of various fabrication processes you are familiar with. Using only these given processes, complete the sequence of steps to fabricate the structure given below. (Hint: All given processes may or may not be required, and the same process maybe used multiple times.)

Processes Available:

Thermal annealing (diffusion)	Epitaxy	Anisotropic Etching
CVD (Chemical Vapor Deposition)	Isotropic Etching	Nanoimprint
CMP (Chemical-mechanical polishing)	Lithography	Thermal oxidation
ALD (Atomic layer deposition)	Ion implantation	Sputtering

	Cu			
TiN				
SiO ₂				

Starting from a N-type silicon wafer [5pts]

Thermal oxidation Lithography Isotropic Etching Ion implantation Thermal annealing Starting from SiO₂ [5pts]

Lithography Anisotropic Etching Sputter TiN CVD Cu CMP

(b) Briefly explain the difference between positive and negative photoresists. [4pts]

The exposed regions are removed for positive photoresist, while the unexposed regions are removed for negative photoresist.

(c) Why does wet lithography provide better resolution? Briefly explain. [3pts]

When light enters the water, its wavelength is reduced by the refraction index of water, 1.43, and therefore the lithography resolution is improved. (lithography resolution = $k\lambda$)

(d) What motivates the IC industry to use increasingly larger silicon wafer size? Briefly explain. [3pts]

More dies of chip can be sliced out of a larger wafer size. Therefore the cost per chip is reduced.

Doping concentration plays an important role in changing the physical and electrical properties of a doped semiconductor. You are given an N-type silicon semiconductor:

(a) Draw carrier concentrations n and p versus doping concentration in T=300K. Do the calculation to specify the left and right intercept of the line. [4pts]

(b) Draw the position of Fermi level versus doping concentration in T=300K. Do the calculation to specify the left and right intercept of the line. [7pts]

(c) Thermal velocity at T=300K and $N_d=10^{15}$ cm⁻³ is 2.3×10^5 m/s. Draw thermal velocity versus doping concentration in 300K and 580K. Do the calculation to specify the intercepts of the lines. [4pts]

- $v_{th} = \sqrt{\frac{3kT}{m}} \propto \sqrt{T}$, therefore it's independent of doping concentration
- (d) i. <u>Qualitatively</u> draw electron mean free time versus doping concentration at 300K and 600K, given that τ_{mn} at 300K, 10^{15} cm⁻³ is six times of τ_{mn} at 600K, 10^{15} cm⁻³. (No need to do calculations) [4pts]

ii. At 300K, what scattering mechanism dominates at low (10^{15}cm^{-3}) and high (10^{18}cm^{-3}) doping concentration respectively? [3pts]

Low (10^{15}cm^{-3}) : Phonon scattering High (10^{18}cm^{-3}) : Columbic (impurity) scattering

iii. At 600K, what scattering mechanism dominates at low (10¹⁵cm⁻³) and high (10¹⁸cm⁻³) doping concentration respectively? [3pts] Low (10¹⁵cm⁻³): Phonon scattering High (10¹⁸cm⁻³): Phonon and impurity both have effect (free 1.5 points !)

(e) <u>Qualitatively</u> draw electron mobility versus doping concentration at 300K and 600K. Briefly explain how you get the curves. (No need to do calculations) [4pts]

 $\mu_n = \frac{q\tau_{mn}}{m_n}$, therefore mobility curves are the same shape of mean free time.

(f) <u>Qualitatively</u> draw electron diffusion constant versus doping concentration at 300K and 600K. Briefly explain how you get the curves. [6pts]

 $D_n = \frac{kT}{q} \mu_n$, therefore, the diffusion constant curves are the same shape except the one at 600K should be doubled up the value.

Consider the above silicon diode. Assume that N^+ and P^+ regions are heavily doped that $E_c = E_f$ in the N^+ region and $E_F = E_V$ in the P^+ region. The doping in the N-type region is 5×10^{16} cm⁻³. Assume that the N layer is thin enough that it is completely depleted.

(a) Sketch the energy band diagram for this diode. Do not be concerned with the exact shape of $E_c(x)$ in the depletion region. [2pts]

(b) Find the built in potential (ϕ_{bi}) of the given diode in Volts. [2pts]

Built in potential (φ_{bi}) = Bandgap = $E_g/q = 1.1V$

(c) Qualitatively draw the electric field in the semiconductor as a function of x under the condition of (i) V=0V (ii) V_r (reverse bias) = 2.2 V on the same plot. (Hint: You may assume that the depletion region is entirely contained in the N region only. No need to do calculation) [4pts]

$$\mathcal{E}$$
1. No depletion in P⁺ and N⁺ region $V_r = 2.2 V$ 2. Slope $= \frac{dE}{dx} = \frac{qN_d}{\epsilon} > 0$ $V_r = 0 V$ 3. Slope $_{2.2V} =$ Slope $_{0V}$ $V_r = 0 V$ 4. Area of & at $V_r = 2.2 V$
 $= 3 \times$ area of & at $V = 0 V$ X

(d) Call the diode in part (a) "diode A". Now consider another "diode B" with the identical N⁺-N-P⁺ structure except doping of N region is 10¹⁷ cm⁻³. Qualitatively draw the electric field at V=0V of diodes A and B as a function of x in the same plot. [4pts]

(e) Does diode A or B has higher breakdown voltage? Briefly explain why. [3pts]

Diode A has a higher breakdown voltage. Because diode A has a lower peak electric field at a given bias. Therefore, diode A has to reach E_{crit} ($E_{critA} = E_{critB}$) at a higher voltage.