UNIVERSITY OF CALIFORNIA
 College of Engineering

Department of Electrical Engineering and Computer Sciences
EECS 130
Spring 2008

Midterm II - Solutions

Name:

SID: \qquad

Problem 1		20
Problem 2		20
Problem 3		20
Problem 4		20
Problem 5		20
Total		100

Problem 1 [20pts]

Answer the following questions concisely:
In a forward-biased $\mathrm{P}^{+} \mathrm{N}$ diode,
(a) [5pts] Which type of carrier (electron or hole) dominates the carrier injection across the P-N junction?

Hole.
(b) [5pts] Which type of carrier contributes most of the stored minority carriers?

Hole.
(c) $[5 \mathrm{pts}] \quad$ Which recombination lifetime (that of the N side or the P side) determines the switching speed of this diode?
N side
(d) [5pts] Which side has the larger depletion region?
N side

Problem 2 [20pts]

Consider a MOS capacitor with $\mathrm{N}+$ polysilicon gate and $N_{a}=5 \times 10^{17} \mathrm{~cm}^{-3}$
(a) [10pts] The C-V characteristic of this MOS capacitor is shown below. Suppose this MOS capacitor is used in a voltage-controlled oscillator, which requires a capacitance tuning range of $\frac{C_{\max }}{C_{\min }}=1.5$, what's the required oxide thickness (Tox) ? Ignore poly depletion effects and inversion charge thickness effects.

$$
\begin{aligned}
& C_{d e p}=\frac{\varepsilon_{s}}{W_{d e p, \max }}=2.12 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2} \quad \phi_{B}=\frac{\mathrm{kT}}{q} \ln \left(\frac{N_{A}}{n_{i}}\right)=0.46 \mathrm{~V} \\
& W_{\text {dep, max }}=\sqrt{\frac{2 \varepsilon_{s} 2 \phi_{B}}{q N_{a}}}=\sqrt{\frac{2 \cdot 11.7 \cdot 8.854 \times 10^{-14} \mathrm{~F} / \mathrm{cm}^{\cdot} \cdot 2 \cdot 0.46 \mathrm{~V}}{1.6 \times 10^{-19} \mathrm{C} \cdot 5 \times 10^{17} \mathrm{~cm}^{-3}}}=4.88 \times 10^{-6} \mathrm{~cm}=48.8 \mathrm{~nm} \\
& C_{\min }=\frac{C_{d e p} C_{o x}}{C_{d e p}+C_{o x}} \quad C_{\max }=C_{o x} \\
& 1.5=\frac{C_{\max }}{C_{\min }}=\frac{C_{d e p}+C_{o x}}{C_{d e p}}=1+\frac{C_{o x}}{C_{d e p}} \\
& C_{o x}=0.5 C_{d e p}=1.06 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2} \\
& T_{o x}=\frac{3.9 \cdot 8.854 \times 10^{-14} \mathrm{~F} / \mathrm{cm}}{1.06 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2}}=3.26 \times 10^{-6} \mathrm{~cm}=32.6 \mathrm{~nm}
\end{aligned}
$$

(b) [5pts] Assume the fixed oxide charge density at the p-type silicon / SiO_{2} interface is $N_{i t}=10^{12} \mathrm{~cm}^{-2}$. The charge is positive. What is the flatband voltage, V_{fb} ? Assume $\mathrm{T}_{\mathrm{ox}}=10 \mathrm{~nm}$. Don't use the T_{ox} calculated in (a).

$$
\begin{aligned}
& C_{o x}=\frac{\varepsilon_{o x}}{T_{o x}}=3.45 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2} \\
& \frac{q N_{o x}}{C_{o x}}=\frac{1.6 \times 10^{-19} \mathrm{C} \cdot 10^{12} \mathrm{l} / \mathrm{cm}^{2}}{3.45 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2}}=0.46 \mathrm{~V} \\
& V_{f b}=\Phi_{g}-\Phi_{s}-\frac{Q_{o x}}{C_{o x}}=-0.56 \mathrm{~V}-0.026 \mathrm{~V} \cdot \ln \frac{5 \times 10^{17}}{10^{10}}-\frac{Q_{o x}}{C_{o x}}=-1.02-\frac{q N_{o x}}{C_{o x}}=-1.48
\end{aligned}
$$

(c) [5pts] Assume there are 3 electron traps (electron states), A, B, and C in the SiO_{2}, as shown below. A is 0.5 eV above $\mathrm{E}_{\mathrm{f}} ; \mathrm{B}$ is located at $\mathrm{E}_{\mathrm{f}} ; \mathrm{C}$ is 0.5 eV below E_{f}. What is the probability that
(1) A is filled
(2) B is empty
(3) C is empty

$$
\begin{aligned}
& \text { (2) B is empty } \\
& \text { (3) C is empty } \\
& f\left(E_{A}\right)=\frac{1}{1+\exp \left(\frac{E_{A}-E_{f}}{k T}\right)}=\frac{1}{1+\exp \left(\frac{500 m e V}{26 m e V}\right)}=4.45 \times 10^{-9}
\end{aligned}
$$

$$
\begin{aligned}
& f\left(E_{T, C}\right)=1-\frac{1}{1+\exp \left(\frac{E_{T, C}-E_{f}}{k T}\right)}=\frac{\exp \left(\frac{E_{T, C}-E_{f}}{k T}\right)}{1+\exp \left(\frac{E_{T, C}-E_{f}}{k T}\right)} \\
& =\frac{4.45 \times 10^{-9}}{1+4.45 \times 10^{-9}}=4.45 \times 10^{-9}
\end{aligned}
$$

Problem 3 [20pts]

An n-channel MOSFET is fabricated on a p-type silicon wafer with $N_{a}=10^{17} \mathrm{~cm}^{-3}$. The gate is $\mathrm{N}+$ polysilicon. $V_{t}-V_{f b}=1.2 V, \mu_{n s}=300 \mathrm{~cm}^{2} / V-s, \mathrm{~T}=300 \mathrm{~K}$, $\mathrm{m}=1$.
(a) $[5 \mathrm{pts}] \quad$ What is the flatband voltage, V_{fb} ?

$$
V_{f b}=\psi_{g}-\psi_{s}=-\frac{E_{g}}{2 q}-\frac{k T}{q} \ln \left(\frac{N_{a}}{n_{i}}\right)=-0.56-0.026 \cdot \ln \left(\frac{10^{17}}{10^{10}}\right)=-0.98
$$

(b) [5pts] If a gate dielectric with a large dielectric constant (high-к dielectric), $\varepsilon_{\mathrm{ox}} /$ $\varepsilon_{0}=25$ is used as the gate dielectric, what is the required oxide thickness (T_{ox}) to achieve $V_{t}-V_{f b}=1.2 \mathrm{~V}$?

$$
\begin{aligned}
& \phi_{B}=\frac{k T}{q} \ln \left(\frac{N_{a}}{n_{i}}\right)=0.026 \cdot \ln \left(\frac{10^{17}}{10^{10}}\right)=0.42 \\
& V_{t}=V_{f b}+2 \phi_{B}+\frac{\sqrt{2 \varepsilon_{s} q N_{a} 2 \phi_{B}}}{C_{o x}} \\
& C_{o x}=\frac{\sqrt{2 \varepsilon_{s} q N_{a} 2 \phi_{B}}}{V_{t}-V_{f b}-2 \phi_{B}} \\
& =\frac{\sqrt{2 \cdot 11.7 \cdot 8.8542 \times 10^{-14} \mathrm{~F} / \mathrm{cm} \cdot 1.6 \times 10^{-19} \mathrm{C} \cdot 10^{17} \mathrm{~cm}^{-3} \cdot 2 \cdot 0.42}}{1.2-2 \cdot 0.42}=4.64 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2}
\end{aligned}
$$

$$
T_{o x}=\frac{\varepsilon_{o x}}{C_{o x}}=\frac{25 \cdot 8.8542 \times 10^{-14} \mathrm{~F} / \mathrm{cm}}{4.64 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2}}=4.77 \times 10^{-6} \mathrm{~cm}=47.7 \mathrm{~nm}
$$

(c) [5pts] If $\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{t}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ds}}=1.5 \mathrm{~V}$, is the transistor operating in linear region or saturation region?

$$
V_{d s a t}=\frac{V_{g s}-V_{t}}{m}=1.0<V_{g s}-V_{t}
$$

The transistor is operating in the saturation region

Problem 4. [20pts]

Consider an n-channel MOSFET with a P^{+}polysilicon gate, a width to length ratio of $W / L=2$, an oxide thickness of $T_{\text {oxe }}=10 \mathrm{~nm}$, and body doping of $N_{a}=5 \times 10^{16} \mathrm{~cm}^{-3}$.
[5pts] (a) Calculate the threshold voltage V_{t}.

$$
\phi_{B}=\frac{k T}{q} \ln \left(\frac{N_{a}}{n_{i}}\right)=0.401 \mathrm{~V}
$$

Since the gate is P^{+}polysilicon gate the flat-band voltage is,

$$
\begin{aligned}
& V_{f b}=\psi_{g}-\psi_{s}=\left(\chi_{s i}+\frac{E_{g}}{q}\right)-\left(\chi_{s i}+\frac{E_{g}}{2 q}+\phi_{B}\right)=\frac{E_{g}}{2 q}-\phi_{B}=0.159 \mathrm{~V} \\
& \therefore V_{t}=V_{f b}+2 \phi_{B}+\frac{\sqrt{2 \varepsilon_{s i} q N_{a} 2 \phi_{B}}}{C_{o x}}=0.159+0.802+0.334=1.295 \mathrm{~V}
\end{aligned}
$$

[5pts] (b) Calculate the body-effect factor m.

$$
m=1+\frac{3 t_{o x}}{W_{d m a x}}=1+\frac{3 t_{o x}}{\sqrt{\frac{2 \varepsilon_{s i} 2 \phi_{B}}{q N_{a}}}}=1.208
$$

[5pts] (c) Find the drain current I_{D} at $V_{g s}=3.5 \mathrm{~V}$ and $V_{d s}=2 \mathrm{~V}$. Use the values obtained from (a) and (b). Assume $\mu_{n s}=250 \mathrm{~cm}^{2} / V \cdot \mathrm{sec}$. (If you haven't solved (a) and (b), use $V_{t}=1 V$ and $m=1.3$.)

Using results from (a) and (b),

$$
V_{d s a t}=\frac{V_{g s}-V_{t}}{m}=\frac{3.5 \mathrm{~V}-1.295 \mathrm{~V}}{1.208}=1.825 \mathrm{~V}<V_{d s}=2 \mathrm{~V}
$$

So the transistor is in saturation.

$$
\therefore I_{D}=\frac{W}{2 m L} \mu_{n s} C_{o x}\left(V_{g s}-V_{t}\right)^{2}=0.348 \mathrm{~mA}
$$

Using the given values,

$$
\begin{gathered}
V_{d s a t}=\frac{V_{g s}-V_{t}}{m}=\frac{3.5 \mathrm{~V}-1 \mathrm{~V}}{1.3}=1.923 \mathrm{~V}<V_{d s}=2 \mathrm{~V} \\
\therefore I_{D}=\frac{W}{2 m L} \mu_{n s} C_{o x}\left(V_{g s}-V_{t}\right)^{2}=0.415 \mathrm{~mA}
\end{gathered}
$$

[5pts] (d) Determine threshold voltage V_{t} with a body to source reverse bias of $V_{s b}=2 \mathrm{~V}$. Assume a constant maximum depletion width of $W_{d \max }=0.15 \mu \mathrm{~m}$ with a retrograde doping profile.

$$
\begin{aligned}
V_{t} & =V_{t 0}+\alpha V_{s b}=V_{t 0}+\frac{3 t_{o x}}{W_{d m a x}} V_{s b} \\
& =1.295 \mathrm{~V}+\frac{3 \times\left(10 \times 10^{-7} \mathrm{~cm}\right)}{0.15 \times 10^{-4} \mathrm{~cm}} \times 2 \mathrm{~V} \\
& =1.295 \mathrm{~V}+0.2 \times 2 \mathrm{~V} \\
& =1.295 \mathrm{~V}+0.4 \mathrm{~V} \\
& =1.695 \mathrm{~V}
\end{aligned}
$$

Problem 5. [20pts]

Design an n-channel MOSFET with a polysilicon gate to have a threshold voltage of $V_{t}=1 \mathrm{~V}$. Assume an oxide thickness of $T_{\text {oxe }}=10 \mathrm{~nm}$, a channel length of $L=1 \mu \mathrm{~m}$, and a body-effect factor of $m=1$.
[5pts] (a) What is the standard polysilicon gate doping type for this transistor?

The standard polysilicon gate doping is N^{+}.
[5pts] (c) Determine is the body doping N_{a}. Assume $\emptyset_{B}=0.45 \mathrm{~V}$ but do not determine N_{a} from $\emptyset_{B}=(k T / q) \ln \left(N_{a} / n_{i}\right)$.

$$
\begin{gathered}
V_{t}=V_{f b}+2 \phi_{B}+\frac{\sqrt{2 \varepsilon_{s i} q N_{a} 2 \phi_{B}}}{C_{o x}}=-\left(\frac{E_{g}}{2 q}+\phi_{B}\right)+2 \phi_{B}+\frac{\sqrt{4 \varepsilon_{s i} q N_{a} \phi_{B}}}{C_{o x}} \\
\therefore N_{a}=\left(V_{t}+\frac{E_{g}}{2 q}-\phi_{B}\right)^{2} \frac{C_{o x}^{2}}{4 \varepsilon_{s i} q \phi_{B}}=4.924 \times 10^{17} \mathrm{~cm}^{-3}
\end{gathered}
$$

[10pts] (c)A drain current of $I_{D}=1.35 \mathrm{~mA}$ is required at $V_{g s}=V_{d s}=3 \mathrm{~V}$. Calculate the required device width W. Use the universal mobility curve given below to find $\mu_{n s}$.

First we find the mobility.

$$
\begin{aligned}
\mathcal{E}_{e f f}=\frac{V_{g s}+V_{t}+0.2 \mathrm{~V}}{6 t_{o x}} & =\frac{3 \mathrm{~V}+1 \mathrm{~V}+0.2 \mathrm{~V}}{6 \times\left(10 \times 10^{-7} \mathrm{~cm}\right)}=0.7 \mathrm{MV} / \mathrm{cm} \\
\therefore \mu_{n s} & =325 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{sec}
\end{aligned}
$$

Calculating $V_{d s a t}$ show the transistor is in saturation.

$$
V_{d s a t}=\frac{V_{g s}-V_{t}}{m}=\frac{3 V-1 V}{1}=2 \mathrm{~V}<V_{d s}=3 \mathrm{~V}
$$

So the current is written as,

$$
\begin{aligned}
& I_{D}=\frac{W}{2 m L} \mu_{n s} C_{o x}\left(V_{g s}-V_{t}\right)^{2}=1.35 \mathrm{~mA} \\
& \therefore W=\frac{2 \cdot m \cdot L \cdot I_{D}}{\mu_{n s} C_{o x}\left(V_{g s}-V_{t}\right)^{2}}=6.015 \mu \mathrm{~m}
\end{aligned}
$$

