EECS C128/ ME C134 Midterm Tues Oct. 19, 2010 1110 - 1230 pm

Name:	
SID:	

- Closed book. One page formula sheet. No calculators.
- There are 4 problems worth 100 points total.

Problem	Points	Score
1	30	
2	30	
3	20	
4	20	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of zero and a letter will be written for your file and to the Office of Student Conduct.

$\tan^{-1}\frac{1}{2} = 26.6^{\circ}$	$\tan^{-1} 1 = 45^{\circ}$
$\tan^{-1}\frac{1}{3} = 18.4^{\circ}$	$\tan^{-1}\frac{1}{4} = 14^{\circ}$
$\tan^{-1}\sqrt{3} = 60^{\circ}$	$\tan^{-1}\frac{1}{\sqrt{3}} = 30^{\circ}$
$\sin 30^\circ = \frac{1}{2}$	$\cos 60^\circ = \frac{\sqrt{3}}{2}$

$20\log_{10}1 = 0dB$	$20\log_{10}2 = 6dB$
$20\log_{10}\sqrt{2} = 3dB$	$20\log_{10}\frac{1}{2} = -6dB$
$20\log_{10} 5 = 20db - 6dB = 14dB$	$20\log_{10}\sqrt{10} = 10 \text{ dB}$
$1/e \approx 0.37$	$1/e^2 \approx 0.14$
$1/e^3 \approx 0.05$	$\sqrt{10} \approx 3.16$

Problem 1 (30 pts) For the system below, let $H_y(s) = 1, G(s) = \frac{8}{(s+6)}$, and $D(s) = \frac{1}{s}$.

[4 pts] a) For w(t) = 0, determine $\frac{E(s)}{R(s)} =$ _____

[4 pts] b) for r(t) = 0, determine $\frac{Y(s)}{W(s)} =$ _____

[4 pts] c) If r(t) = 0 and w(t) is a unit step, find y(t) =_____

[4 pts] d) If r(t) = 0 and w(t) is a unit step, find $\lim_{t\to\infty} e(t) =$ _____

[4 pts] e) If r(t) = tu(t) and w(t) = 0, find $\lim_{t\to\infty} e(t) =$ _____

Problem 1, cont.

[6 pts] g) For the system with closed loop poles and zeros as shown, estimate damping ratio $\zeta = _____$, natural frequency $\omega_n = _____$, damped frequency $\omega_d = _____$,

and percent overshoot $M_p =$ ____ (ok to leave as expression).

Problem 2. (30 pts)

Given open loop transfer function G(s):

$$G(s) = \frac{500(s+21)}{(s+1)(s+11)(s^2+2s+101)}$$

For the root locus:

[2 pts] a) Determine the number of branches of the root locus = _____

[4 pts] b) Determine the locus of poles on the real axis _____

[3 pts] c) Determine the angles for each asymptote:

[4 pts] d) The approximation for the asymptote intersection point is s =_____

[9 pts] e) The angle of departure for the poles are:

s = -1: _____ s = -11: _____ s = -1 + 10j: _____ s = -1 - 10j: _____

[8 pts] f) Sketch the root locus below using rules 1-4 discussed in class.

Problem 3. Bode Plot (20 points)

[10 pts] a) Sketch, labeling slopes, the magnitude and phase of G(s) on the graph below for

$$G(s) = \frac{800}{(s+20)(s^2+2s+4)}$$

[4 pts] b) label gain and phase margin in Bode plot

[6 pts] c) based on the Bode plot, estimate the following:

phase margin = _____ degrees,

cross over frequency $\omega_c = _$ rad/sec

gain margin = $_$ dB

Problem 4. (20 pts)

Given open loop transfer function G(s):

$$G(s) = \frac{500(s+21)}{(s+1)(s+11)(s^2+2s+101)}$$

[6 pts] a) Estimate |G(s = 10j)| from transfer function = _____ (Hint: consider breakpoints).

[4 pts] b) sketch Nyquist plot for G(s) below, showing clearly any encirclements.

[4 pts] c) number of closed loop right half plane poles = ? _____

[6 pts] d) Use the Nyquist plot to determine range of gain k for stability for the closed loop system $\frac{kG}{1+kG}$: 0 < k <_____

