EECS C128/ ME C134
 Midterm
 Tues Oct. 19, 2010
 1110-1230 pm

Name: \qquad
SID: \qquad

- Closed book. One page formula sheet. No calculators.
- There are 4 problems worth 100 points total.

Problem	Points	Score
1	30	
2	30	
3	20	
4	20	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of zero and a letter will be written for your file and to the Office of Student Conduct.

$\tan ^{-1} \frac{1}{2}=26.6^{\circ}$	$\tan ^{-1} 1=45^{\circ}$
$\tan ^{-1} \frac{1}{3}=18.4^{\circ}$	$\tan ^{-1} \frac{1}{4}=14^{\circ}$
$\tan ^{-1} \sqrt{3}=60^{\circ}$	$\tan ^{-1} \frac{1}{\sqrt{3}}=30^{\circ}$
$\sin 30^{\circ}=\frac{1}{2}$	$\cos 60^{\circ}=\frac{\sqrt{3}}{2}$

$20 \log _{10} 1=0 d B$	$20 \log _{10} 2=6 d B$
$20 \log _{10} \sqrt{2}=3 d B$	$20 \log _{10} \frac{1}{2}=-6 d B$
$20 \log _{10} 5=20 d b-6 d B=14 d B$	$20 \log _{10} \sqrt{10}=10 \mathrm{~dB}$
$1 / e \approx 0.37$	$1 / e^{2} \approx 0.14$
$1 / e^{3} \approx 0.05$	$\sqrt{10} \approx 3.16$

Problem 1 (30 pts)
For the system below, let $H_{y}(s)=1, G(s)=\frac{8}{(s+6)}$, and $D(s)=\frac{1}{s}$.
[4 pts] a) For $w(t)=0$, determine $\frac{E(s)}{R(s)}=$ \qquad
[4 pts] b) for $r(t)=0$, determine $\frac{Y(s)}{W(s)}=$ \qquad
[4 pts] c) If $r(t)=0$ and $w(t)$ is a unit step, find $y(t)=$ \qquad
[4 pts] d) If $r(t)=0$ and $w(t)$ is a unit step, find $\lim _{t \rightarrow \infty} e(t)=$ \qquad
[4 pts] e) If $r(t)=t u(t)$ and $w(t)=0$, find $\lim _{t \rightarrow \infty} e(t)=$

Problem 1, cont.
[4 pts] f) given $H(s)=\frac{s-1}{s+3}$, sketch the step response $y(t)=h(t) * u(t)$.

[6 pts] g) For the system with closed loop poles and zeros as shown, estimate damping ratio $\zeta=$ \qquad ,
natural frequency $\omega_{n}=$ \qquad ,
damped frequency $\omega_{d}=$ \qquad ,
and percent overshoot $M_{p}=$ \qquad (ok to leave as expression).

Problem 2. (30 pts)
Given open loop transfer function $G(s)$:

$$
G(s)=\frac{500(s+21)}{(s+1)(s+11)\left(s^{2}+2 s+101\right)}
$$

For the root locus:
[2 pts] a) Determine the number of branches of the root locus $=$ \qquad
[4 pts] b) Determine the locus of poles on the real axis \qquad
[3 pts] c) Determine the angles for each asymptote:
[4 pts] d) The approximation for the asymptote intersection point is $s=$ \qquad
[9 pts] e) The angle of departure for the poles are:
$s=-1$: \qquad
$s=-11:$ \qquad
$s=-1+10 j:$ \qquad $s=-1-10 j:$ \qquad
[8 pts] f) Sketch the root locus below using rules 1-4 discussed in class.

Problem 3. Bode Plot (20 points)
[10 pts] a) Sketch, labeling slopes, the magnitude and phase of $G(s)$ on the graph below for

$$
G(s)=\frac{800}{(s+20)\left(s^{2}+2 s+4\right)}
$$

[4 pts] b) label gain and phase margin in Bode plot
[6 pts] c) based on the Bode plot, estimate the following:
phase margin $=$ \qquad degrees,
cross over frequency $\omega_{c}=$ \qquad $\mathrm{rad} / \mathrm{sec}$
gain margin $=$ \qquad dB

Bode Diagram

Problem 4. (20 pts)
Given open loop transfer function $G(s)$:

$$
G(s)=\frac{500(s+21)}{(s+1)(s+11)\left(s^{2}+2 s+101\right)}
$$

[6 pts] a) Estimate $|G(s=10 j)|$ from transfer function $=$ \qquad (Hint: consider breakpoints).
[4 pts] b) sketch Nyquist plot for $G(s)$ below, showing clearly any encirclements.
[4 pts] c) number of closed loop right half plane poles $=$? \qquad
[6 pts] d) Use the Nyquist plot to determine range of gain k for stability for the closed loop system $\frac{k G}{1+k G}$: $0<k<$ \qquad

