
EE 127 / EE 227AT

Solution Midterm 1 Spring 2016

Please write your answers on these sheets, use the back sides if needed. Show your work.
You can use a fact from the slides/book without having to prove it unless you are specifically
asked to do so. Be organized and use readable handwriting. There is a page for scratch work
at the end.

Solution 1 (Solution of optimization problems.) Give specific examples of functions
f0 : Rn → R and f : Rn → R such that the optimization problem minx f0(x) subject to
f(x) ≤ 0 has the following properties. Only give one example per case for a total of three
examples. Please no drawings. Give the formulae for f0 and f .

(a) (5 pts.) The set of optimal solutions contains one point.

n = 1, f0(x) = x2, f(x) = x.

(b) (5 pts.) The set of optimal solutions contains an infinite number of points.

n = 1, f0(x) = 0, f(x) = x.

(c) (5 pts.) The set of optimal solutions is empty and there is a constant a ∈ R such that
f0(x) ≥ a for all x ∈ Rn.

n = 1, f0(x) = ex, f(x) = x, a = 0.
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Solution 2 (Matrix norms.) (15 pts.) A matrix A ∈ Rm,n with rank r has singular values
σ1 ≥ σ2 ≥ ... ≥ σr > 0. Prove that the spectral norm satisfies ‖A‖22 = σ2

1.

Theorem 4.3 states that

x>A>Ax

x>x
≤ λ1(A

>A), for all x 6= 0,

where λ1(A
>A) is the largest eigenvalue of A>A. Moreover, for x = u1, with u1 a unit-

norm eigenvalue of A>A corresponding to λ1(A
>A), we have that the inequality holds with

equality. That is,
‖Au1‖22
‖u1‖22

= λ1(A
>A).

Thus, ‖Au1‖22 = λ1(A
>A) = σ2

1, where σ1 is the largest singular value of A by the SVD
theorem.

Solution 3 (Matrix approximation.) For a given A ∈ Rm,n, with rank(A) = r, consider
the problem

min
Ak∈Rm,n

‖A− Ak‖2F subject to rank(Ak) = k.

Let Σr
i=1σiuiv

>
i be a singular value decomposition of A. For k ≤ r, it is known that an

optimal solution of the problem is Ak = Σk
i=1σiuiv

>
i .

(a) (5 pts.) Suppose that r = 4 and σ1 = 4, σ2 = 2, σ3 = 2, and σ4 = 1. Quantify the
relative error in Ak compared to the “true” matrix A for k = 1, 2, 3,.

‖A− Ak‖2F
‖A‖2F

=
σ2
k+1 + ...+ σ2

r

σ2
1 + ...+ σ2

r

.

For k = 1, this ratio becomes (4 + 4 + 1)/(16 + 4 + 4 + 1) = 9/25

For k = 2, this ratio becomes (4 + 1)/(16 + 4 + 4 + 1) = 5/25

For k = 3, this ratio becomes 1/(16 + 4 + 4 + 1) = 1/25

(b) (10 pts.) Suppose m ≥ n and rank(A) = n. Formulate an optimization problem that
determines how “far” A is from being of rank n − 1. Solve this problem and obtain an
explicit expression for a matrix B ∈ Rm,n such that A+B has rank n− 1. (Ignore what
was given in part a.)

The problem becomes

min
B∈Rm,n

‖B‖2F subject to rank(A+B) = n− 1.
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If we set k = n − 1 and Ak = A + B, then the new problem is of the same form as
the new original problem and thus we have an optimal solution Ak =

∑n−1
i=1 σiuiv

>
i . An

optimal B = Ak − A = −σnunv>n .

Solution 4 (Optimization over norm balls.) (10 pts.) For a given y ∈ Rn, derive an
optimal solution of the problem max x>y subject to ‖x‖∞ ≤ 1.

Since x>y =
∑n

i=1 xiyi and |xi| ≤ 1 for all i, we select xi = 1 when yi > 0, xi = −1 when
yi < 0, and xi arbitrarily when yi = 0 to achieve a maximum solution. The maximum value
is then

∑n
i=1 |yi| = ‖y‖1.

Solution 5 (Projection on a hyperplane.) Consider the hyperplane {z ∈ Rn : a>z =
b}, a 6= 0, and a point y ∈ Rn.

(a) (10 pts.) Determine the Euclidean projection of y onto the hyperplane.

We need to have that the projection y∗ satisfies a>y∗ = b and (y − y∗) is perpendicular
to the hyperplane, i.e., y − y∗ = αa for some α ∈ R. Pre-multiplying the last condition
with a>, we obtain that

a>(y − y∗) = α‖a‖22.

Substituting in a>y∗ = b, this leads to a>y − b = α‖a‖22 and

α =
a>y − b
‖a‖22

.

The projection of y is therefore

y∗ = y − αa =
a>y − b
‖a‖22

a.

(b) (5 pts.) Determine the Euclidean distance between y and its projection on the hyper-
plane.

Plugging in y∗ from above, we find that

‖y − y∗‖2 = |a|‖a‖2 =
|a>y − b|
‖a‖2

.

Solution 6 (Properties of dyad.) Let x, y ∈ Rn, both not identical to the zero vector,
and A = xy> ∈ Rn,n.
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(a) (5 pts.) Determine an eigenvalue and an eigenvector of A.

Eigenvalue λ = y>x and eigenvector u = x work because, Au = xy>x = uλ.

(b) (5 pts.) We know that A has rank one. Write a proof of this fact.

R(A) = {z ∈ Rn : z = Av, v ∈ Rn}. Since Av = xy>v = γx for γ = y>v, the range of
A is simply a line. Thus, there is only one linearly independent column in A.

(c) (5 pts.) What is the dimension of N (A)?

The dimension of N (A) = n − rankA = n − 1 by the fundamental theorem of linear
algebra.

(d) (5 pts.) Compute a singular value decomposition of A and write it in compact form.

Take σ = ‖x‖2‖y‖2, u = x/‖x‖2, and v = y/‖y‖2. Clearly, A = σuv>. Moreover,
u>u = 1, v>v = 1, Av = xy>y/‖y‖2 = σu, and u>A = x>xy>/‖x‖2 = σv. Thus, σ, u, v
is a SVD of A.

Solution 7 (Bound on a polynomial’s derivative.) (10 pts.) For w ∈ Rk+1, we define
the polynomial pw, with values

pw(x)
.
= w1 + w2x+ . . .+ wk+1x

k.

Prove that

∀ x ∈ [−1, 1] :

∣∣∣∣dpw(x)

dx

∣∣∣∣ ≤ k3/2‖v‖2,

where v = (w2, . . . , wk+1) ∈ Rk.

With z = (1, 2, . . . , k), Cauchy-Schwartz inequality gives that∣∣∣∣dpw(x)

dx

∣∣∣∣ =
∣∣w2 + 2w3x+ . . .+ kwk+1x

k−1∣∣
≤ |w2|+ 2|w3|+ . . .+ k|wk+1|
= |v>z|
≤ ‖v‖2 · ‖z‖2.

The conclusion follows after realizing that

‖z‖2 =
√

1 + 4 + . . .+ k2 ≤
√
k · k2 = k3/2.
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