Solution Midterm 1 Spring 2016

Please write your answers on these sheets, use the back sides if needed. Show your work. You can use a fact from the slides/book without having to prove it unless you are specifically asked to do so. Be organized and use readable handwriting. There is a page for scratch work at the end.

Solution 1 (Solution of optimization problems.) Give specific examples of functions $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that the optimization problem $\min _{x} f_{0}(x)$ subject to $f(x) \leq 0$ has the following properties. Only give one example per case for a total of three examples. Please no drawings. Give the formulae for f_{0} and f.
(a) (5 pts.) The set of optimal solutions contains one point.
$n=1, f_{0}(x)=x^{2}, f(x)=x$.
(b) (5 pts.) The set of optimal solutions contains an infinite number of points.
$n=1, f_{0}(x)=0, f(x)=x$.
(c) (5 pts.) The set of optimal solutions is empty and there is a constant $a \in \mathbb{R}$ such that $f_{0}(x) \geq a$ for all $x \in \mathbb{R}^{n}$.
$n=1, f_{0}(x)=e^{x}, f(x)=x, a=0$.

Solution 2 (Matrix norms.) (15 pts.) A matrix $A \in \mathbb{R}^{m, n}$ with rank r has singular values $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$. Prove that the spectral norm satisfies $\|A\|_{2}^{2}=\sigma_{1}^{2}$.

Theorem 4.3 states that

$$
\frac{x^{\top} A^{\top} A x}{x^{\top} x} \leq \lambda_{1}\left(A^{\top} A\right), \text { for all } x \neq 0
$$

where $\lambda_{1}\left(A^{\top} A\right)$ is the largest eigenvalue of $A^{\top} A$. Moreover, for $x=u_{1}$, with u_{1} a unitnorm eigenvalue of $A^{\top} A$ corresponding to $\lambda_{1}\left(A^{\top} A\right)$, we have that the inequality holds with equality. That is,

$$
\frac{\left\|A u_{1}\right\|_{2}^{2}}{\left\|u_{1}\right\|_{2}^{2}}=\lambda_{1}\left(A^{\top} A\right)
$$

Thus, $\left\|A u_{1}\right\|_{2}^{2}=\lambda_{1}\left(A^{\top} A\right)=\sigma_{1}^{2}$, where σ_{1} is the largest singular value of A by the SVD theorem.

Solution 3 (Matrix approximation.) For a given $A \in \mathbb{R}^{m, n}$, with $\operatorname{rank}(A)=r$, consider the problem

$$
\min _{A_{k} \in \mathbb{R}^{m, n}}\left\|A-A_{k}\right\|_{F}^{2} \text { subject to } \operatorname{rank}\left(A_{k}\right)=k
$$

Let $\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}$ be a singular value decomposition of A. For $k \leq r$, it is known that an optimal solution of the problem is $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{\top}$.
(a) (5 pts.) Suppose that $r=4$ and $\sigma_{1}=4, \sigma_{2}=2, \sigma_{3}=2$, and $\sigma_{4}=1$. Quantify the relative error in A_{k} compared to the "true" matrix A for $k=1,2,3$,.

$$
\frac{\left\|A-A_{k}\right\|_{F}^{2}}{\|A\|_{F}^{2}}=\frac{\sigma_{k+1}^{2}+\ldots+\sigma_{r}^{2}}{\sigma_{1}^{2}+\ldots+\sigma_{r}^{2}}
$$

For $k=1$, this ratio becomes $(4+4+1) /(16+4+4+1)=9 / 25$
For $k=2$, this ratio becomes $(4+1) /(16+4+4+1)=5 / 25$
For $k=3$, this ratio becomes $1 /(16+4+4+1)=1 / 25$
(b) (10 pts.) Suppose $m \geq n$ and $\operatorname{rank}(A)=n$. Formulate an optimization problem that determines how "far" A is from being of rank $n-1$. Solve this problem and obtain an explicit expression for a matrix $B \in \mathbb{R}^{m, n}$ such that $A+B$ has rank $n-1$. (Ignore what was given in part a.)

The problem becomes

$$
\min _{B \in \mathbb{R}^{m, n}}\|B\|_{F}^{2} \text { subject to } \operatorname{rank}(A+B)=n-1
$$

If we set $k=n-1$ and $A_{k}=A+B$, then the new problem is of the same form as the new original problem and thus we have an optimal solution $A_{k}=\sum_{i=1}^{n-1} \sigma_{i} u_{i} v_{i}^{\top}$. An optimal $B=A_{k}-A=-\sigma_{n} u_{n} v_{n}^{\top}$.

Solution 4 (Optimization over norm balls.) (10 pts.) For a given $y \in \mathbb{R}^{n}$, derive an optimal solution of the problem $\max x^{\top} y$ subject to $\|x\|_{\infty} \leq 1$.

Since $x^{\top} y=\sum_{i=1}^{n} x_{i} y_{i}$ and $\left|x_{i}\right| \leq 1$ for all i, we select $x_{i}=1$ when $y_{i}>0, x_{i}=-1$ when $y_{i}<0$, and x_{i} arbitrarily when $y_{i}=0$ to achieve a maximum solution. The maximum value is then $\sum_{i=1}^{n}\left|y_{i}\right|=\|y\|_{1}$.

Solution 5 (Projection on a hyperplane.) Consider the hyperplane $\left\{z \in \mathbb{R}^{n}: a^{\top} z=\right.$ $b\}, a \neq 0$, and a point $y \in \mathbb{R}^{n}$.
(a) (10 pts.) Determine the Euclidean projection of y onto the hyperplane.

We need to have that the projection y^{*} satisfies $a^{\top} y^{*}=b$ and $\left(y-y^{*}\right)$ is perpendicular to the hyperplane, i.e., $y-y^{*}=\alpha a$ for some $\alpha \in \mathbb{R}$. Pre-multiplying the last condition with a^{\top}, we obtain that

$$
a^{\top}\left(y-y^{*}\right)=\alpha\|a\|_{2}^{2}
$$

Substituting in $a^{\top} y^{*}=b$, this leads to $a^{\top} y-b=\alpha\|a\|_{2}^{2}$ and

$$
\alpha=\frac{a^{\top} y-b}{\|a\|_{2}^{2}} .
$$

The projection of y is therefore

$$
y^{*}=y-\alpha a=\frac{a^{\top} y-b}{\|a\|_{2}^{2}} a .
$$

(b) (5 pts.) Determine the Euclidean distance between y and its projection on the hyperplane.

Plugging in y^{*} from above, we find that

$$
\left\|y-y^{*}\right\|_{2}=|a|\|a\|_{2}=\frac{\left|a^{\top} y-b\right|}{\|a\|_{2}} .
$$

Solution 6 (Properties of dyad.) Let $x, y \in \mathbb{R}^{n}$, both not identical to the zero vector, and $A=x y^{\top} \in \mathbb{R}^{n, n}$.
(a) (5 pts.) Determine an eigenvalue and an eigenvector of A.

Eigenvalue $\lambda=y^{\top} x$ and eigenvector $u=x$ work because, $A u=x y^{\top} x=u \lambda$.
(b) (5 pts.) We know that A has rank one. Write a proof of this fact.
$\mathcal{R}(A)=\left\{z \in \mathbb{R}^{n}: z=A v, v \in \mathbb{R}^{n}\right\}$. Since $A v=x y^{\top} v=\gamma x$ for $\gamma=y^{\top} v$, the range of A is simply a line. Thus, there is only one linearly independent column in A.
(c) (5 pts.) What is the dimension of $\mathcal{N}(A)$?

The dimension of $\mathcal{N}(A)=n-\operatorname{rank} A=n-1$ by the fundamental theorem of linear algebra.
(d) (5 pts.) Compute a singular value decomposition of A and write it in compact form.

Take $\sigma=\|x\|_{2}\|y\|_{2}, u=x /\|x\|_{2}$, and $v=y /\|y\|_{2}$. Clearly, $A=\sigma u v^{\top}$. Moreover, $u^{\top} u=1, v^{\top} v=1, A v=x y^{\top} y /\|y\|_{2}=\sigma u$, and $u^{\top} A=x^{\top} x y^{\top} /\|x\|_{2}=\sigma v$. Thus, σ, u, v is a SVD of A.

Solution 7 (Bound on a polynomial's derivative.) (10 pts .) For $w \in \mathbb{R}^{k+1}$, we define the polynomial p_{w}, with values

$$
p_{w}(x) \doteq w_{1}+w_{2} x+\ldots+w_{k+1} x^{k}
$$

Prove that

$$
\forall x \in[-1,1]:\left|\frac{\mathrm{d} p_{w}(x)}{\mathrm{d} x}\right| \leq k^{3 / 2}\|v\|_{2}
$$

where $v=\left(w_{2}, \ldots, w_{k+1}\right) \in \mathbb{R}^{k}$.

With $z=(1,2, \ldots, k)$, Cauchy-Schwartz inequality gives that

$$
\begin{aligned}
\left|\frac{\mathrm{d} p_{w}(x)}{\mathrm{d} x}\right| & =\left|w_{2}+2 w_{3} x+\ldots+k w_{k+1} x^{k-1}\right| \\
& \leq\left|w_{2}\right|+2\left|w_{3}\right|+\ldots+k\left|w_{k+1}\right| \\
& =\left|v^{\top} z\right| \\
& \leq\|v\|_{2} \cdot\|z\|_{2}
\end{aligned}
$$

The conclusion follows after realizing that

$$
\|z\|_{2}=\sqrt{1+4+\ldots+k^{2}} \leq \sqrt{k \cdot k^{2}}=k^{3 / 2}
$$

