EE 126 Fall 2006 Midterm #1
Thursday October 6, 7-8:30pm

® You have 90 minutes to complete the quiz.

» Write your solutions in the exam booklet. We will not consider any work not in the exam
booklet.

* This quiz has three problems that are in no particular order of difficulty.

* You may give an answer in the form of an arithmetic expression (sums, products, ratios, factori-
als) of numbers that could be evaluated using a calculator.

* A correct answer does not guarantee full credit and a wrong answer does not guarantee loss of
credit. You should concisely indicate your reasoning and show all relevant work. The grade on
each problem is based on our judgment of your level of understanding as reflected by what you
have written.

* This is a closed-book exam except for one single-sided, handwritten, 8.5 x 11 formula sheet
plus a calculator.

* Be neat! If we can’t read it, we can’t grade it.

* At the end of the quiz, turn in your solutions along with this quiz (this piece of paper).



Problem 1: (10 points)

Consider the following game: first a coin with P(heads) = q is tossed once. If the coin comes up
tails, then you roll a 4-sided die; otherwise, you roll a 6-sided die. You win the amount of money (in
dollars $) corresponding to the given die roll. Let X be an indicator random variable for the coin toss
(X =01iftoss is tails; X =1 if toss is heads), and let Y be the random variable corresponding to the
amount of money that you win.

(a) (3pt) Compute the joint PMF pX,Y . (It will be a function of q).

(b) (4pt) Compute the conditional PMFpX | Y , again as a function of q. Supposing that it is known
that (on some trial of this game) you made 2$ or less, determine the probability that the initial
coin toss was heads, as a function of q.

(c) (3pt) Assume that you have have to pay 3$ each time that you play this game. Determine, as a
function of q, how much money you will win or lose on average. For what value of q do you
break even?



Problem 2: (12 points)

Suppose one has a deck of cards that are well-shuffled, meaning that each card is equally likely
to be located anywhere in the deck, independently of the position of all the other cards.

(a) (2 pt) In how many ways can the cards be shuffled?

Now suppose someone removes cards from the deck, one by one. (In each of the following
three parts, assume that we start with a fresh deck each time.)

(b) (3 pt) In how many ways can we remove 7 cards, such that all of those are spades?
(c) (3 pt) In how many ways can we remove 10 cards, such that 4 are spades and 6 are hearts?
(d) (4 pt) If one removes 20 cards, what is the probability that 8 are spades, but 6 are NOT hearts?



Problem 3: (18 points)

John can either walk to school (which takes 25 min), or take the bus (the bus takes 10 min).
However, the buses don’t have a fixed schedule. Instead, there is probability p that a bus will arrive
on each even-numbered minute (e.g., t =0, 2,4, . ..). If John goes to the bus stop, then he always
arrives at some odd-numbered minute (e.g.,t =1, 3,5 ...). Buses never arrive at an odd-numbered
minute.

(a) (2 pt) Let X be a random variable associated withthe time between two consecutive buses.
Find the expected value E[X].

(b) (3 pt) What is the expected time it takes to get to school if John goes by bus (including both the
waiting time at the bus stop, and driving time)?

Now suppose that John has no idea what p is, so that his strategy is to flip a fair coin: if the coin
is heads, he walks, if the coin is tails, he waits for the bus.

(c) (3 pt) Letting Y be the total time it takes to get to school, find the PMF of Y and compute E[Y ].
(d) (3 pt) We are interested in the variance of Y . John’s friend Bob gives the following argument:
“Let v1 be the variance of the time needed to go to school if John walks, and v2 the variance of
the time needed if he waits for the bus. Because John has equal chances of walking or taking
the bus, the variance of Y is just the average of v1 and v2 . Is Bob right? Explain why or why
not. (In doing so, you are not required to find the variance of X).

For the following two parts, suppose that John always decides to take the bus.

(e) (4 pt) Let Znext be a discrete random variable corresponding to the time (in minutes) that
elapses from John’s arrival at the bus stop until the next bus comes, and Zlast a random variable
associated with the time by which John missed the last bus. Compute the expected values
E[Znext | and E[Zlast ].

() (3 pt) One might that expect E[X] = E[Znext | + E[Zlast ] (see part (a) for the definition of X).
Explain why this is not true.



