EECS 123 -- MIDTERM 1

EECS 123 -- MIDTERM 1

4 October 1994 8:10 - 9:30 a.m.

This is an open-book exam. Calculators are allowed. Please show your work *clearly* if you wish to receive partial credit. Good luck!

1.

Consider sampling of a continuous-time signal **xc** (**t**), with a Fourier transform $X_{c}(\Omega)$ which is real

and shown below:

Discrete-time processing is done with a filter having impulse response $\mathbf{h}[\mathbf{n}]$ and discrete-time Fourier transform $H(e^{\mathbf{j}\mathbf{w}})$. Reconstruction uses an ideal lowpass filter $\mathbf{h}_1(\mathbf{t})$. One wants to obtain an output signal $\mathbf{y}(\mathbf{t})$ with Fourier transform $Y(\Omega)$ which is real and given by

so, how? (Hint: There will be a don't care region.)

(b)

EECS 123 -- MIDTERM 1

EECS 123 -- MIDTERM 1

15 pts. Now sample $\mathbf{x}(\mathbf{t})$ with sampling frequency $\Omega_1 = \frac{3}{2}\Omega_n$

i.

8 pts. Give the spectrum
$$X_{I}(\Omega)$$
 in this case.

ii.

7 pts. Indicate how to reconstruct as much of the spectrum of $X(\Omega)$ as possible from $X_1(\Omega)$, by interpolation from the samples. Give the interpolation filter $H_i(\Omega)$.

2.

Consider the following multirate system, that is, involving sampling rate changes

$$x[n] \longrightarrow 2 \longrightarrow h[n] \longrightarrow 2 \longrightarrow y[n]$$

where $2 \downarrow$ and $2 \uparrow$ mean downsampling and upsampling by 2, respectively.

(a)

10 pts. Is the above system

i. linear?
ii. time-invariant?
iii. causal?

10 pts. Consider $h[n] = \delta[n]$, that is, the identity. What is $\mathbf{y}[\mathbf{n}]$ as a function of $\mathbf{x}[\mathbf{n}]$? (Do this in time-domain.)

(c)

(b)

10 pts. Consider now discrete-time signals $\mathbf{x}[\mathbf{n}]$ which are half-band lowpass, namely

$$X(e^{j\omega}) = 0$$
 $\pi/2 \le |\omega| \le \pi$

For example, one such signal is given by

Now, the filter h[n] is an ideal half-band lowpass filter with

EECS 123 -- MIDTERM 1

$$H(e^{j\omega}) = \begin{cases} 2 & |\omega| < \pi/2 \\ 0 & |\pi/2| \le |\omega| \le \pi \end{cases}$$

What is the output $Y(e^{j\omega})$ for the example input signal $X(e^{j\omega})$ shown above?

(d)

10 pts. The output $\mathbf{y}[\mathbf{n}]$ is now lowpass filtered by an ideal half-band filter $H_{LP}(e^{j\omega}) = 1$ for $|w| < \pi/2$. 0 for $\pi/2 \le |w| \le \pi$. The output of **HLP** is called $\mathbf{z}[\mathbf{n}]$. For input

signals that are half-band lowpass, show that the input-output relationship from $\mathbf{x}[\mathbf{n}]$ to $\mathbf{z}[\mathbf{n}]$ is that of an ideal lowpass filter. What is its cut-off frequency?

3.

Consider the LTI system:

x[n] h[n] r y[n] gain h[n](a) 5 pts. Find an expression for the transfer function $A(z) = \frac{Y(z)}{X(z)}$ in terms of $\mathbf{H}(\mathbf{z})$. (b) 5 pts. When $\mathbf{x}[n] = \delta[n]$, the output is $f[n] = \alpha^n \mathbf{u}[n] + \beta \cdot \alpha^{n-1} \mathbf{u}[n]$. Find $\mathbf{h}[\mathbf{n}]$ and $\mathbf{H}(\mathbf{z})$ in terms of **a** and $\boldsymbol{\beta}$. (c) 5 *pts*. Plot the region of convergence of $\mathbf{H}(\mathbf{z})$. (d) 5 pts. Find the DTFT of h[n]. For what values of α does $H(e^{j\omega})$ uniformly converge? (e) 5 pts. For $\alpha = \frac{1}{2}$ and $\beta = -2$, plot the pole-zero diagram of $A(x) = \frac{Y(x)}{X(x)}$. Include the unit circle in your diagram. (f) 5 pts. For $\alpha = \frac{1}{2}$ and $\beta = -2$, plot the magnitude of $A(e^{j\omega})$. (Hint: Express the numerator as a complex number times the complex conjugate of the denominator. The answer is very simple.)

1998-11-22 Converted to HTML by Danny Yoo (dyoo@uclink4.berkeley.edu)