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Name: _______________________________

 

UNIVERSITY OF CALIFORNIA

College of Engineering
Department of Electrical Engineering

and Computer Sciences

 

Professor David Tse

 

EECS 121 — FINAL EXAM

 

21 May 1997, 5:00-8:00 p.m.

 

Please write answers on blank pages only. Answer all 5 questions. Clear justifications of answers are needed.

 

Problem 1 (20 points) — True or False

 

Please explain fully. Answers without explanations will get no marks.

 

a)

 

If  and  are two events, then  

 

only

 

 if  and  are independent.

 

b)

 

We have a channel bandlimited to , and want to design a transmit filter such that we have controlled
ISI only at the adjacent symbol (no ISI at all other symbols). It may still be possible to do this when the sym-

bol rate .

 

c)

 

QAM with high constellation size is a suitable modulation scheme to use for deep-space communication.

 

d)

 

Consider the transmission of binary PAM over a channel with known ISI, followed by a matched filter and a
sampler at symbol rate. One can design a MMSE equalizer in conjunction with a symbol-by-symbol detector
that outperforms a sequence detector based on Viterbi’s algorithm, in terms of probability of detection error.

 

e)

 

Non-coherent demodulation of DPSK (differential phase-shift keying) results in the same probability of
detection error as coherent demodulation of PSK.
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Problem 2 (20 points)

 

Consider an 

 

M

 

-ary FSK (frequency-shift keying) modulation scheme:

where  is the symbol period,  is the carrier frequency, and  is the frequency separation.

 

[4 pts.] a)

 

Choose a  such that the signals are all orthogonal. Verify that they are.

 

[6 pts.] b)

 

Design an optimal 

 

coherent

 

 demodulation and detection scheme, assuming perfect phase estimates.

 

[5 pts.] c)

 

Derive an expression for the probability of detection error.

 

[5 pts.] d)

 

Derive a union bound for the probability of error.
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Problem 3 (20 points)

 

Consider a channel with ISI, with impulse response: . Transmission is done via binary

PAM with transmit filter . The receiver is composed of a matched filter followed by a symbol-rate equalizer

followed by a symbol-by-symbol detector.

The symbols in the information sequence  are assumed to be independent and equally likely to be 1 or .

 

[10 pts.] a)

 

Design a zero-forcing linear equalizer to cancel the effects of the ISI. Does it depend on the statistics
of the information sequence?

 

[10 pts.] b)

 

Design a 2-tap MMSE linear equalizer. Does it depend on the statistics of the information sequence?
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Problem 4 (20 points)

 

In class we studied the Miller code which is an example of a run length-limited code. In this problem, we will
look at another code, which is an example of an 

 

error-correcting convolutional

 

 code.

The informational sequence  is a sequence of equally likely 0’s and 1’s. The coded sequence  is given

by

where  is addition mod 2. The symbol sequence  is transmitted over an AWGN channel using antipodal

PAM at symbol rate .

 

[3 pts.] a)

 

Consider as an example the information sequence  . Find the corresponding

coded sequence . (Assume that  for ). What is the length of the coded sequence?

 

[3 pts.] b)

 

What is the 

 

rate

 

 at which information bits is transmitted over the channel?

We now want to design a detector for the information sequence .

 

[4 pts.] c)

 

Recall that for the Miller code, the previous information bit serves as the state of the system. What
can be used as the state for this problem? How large is the state space? Enumerate all possible states.

 

[5 pts.] d)

 

Draw the trellis, with each stage of the trellis corresponding to an information bit transmitted.

 

[5 pts.] e)

 

Using the trellis or otherwise, describe as clearly as possible how optimal detection of the informa-
tion sequence  can be done at the receiver.
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Problem 5 (20 points)

Consider a multiple-access communication system, with two transmitters and one
receiver. Both transmitters use binary PAM. Let  be a rectangular transmit

pulse. Sender A uses the pulse , and sender B uses the pulse . At

time 0, sender A transmit symbol X and sender B transmits symbol Y, where X and
Y are independent and equally likely to be 1 or . The overall transmitted signal

is: .

The received signal is  where  is independent AWGN with power spectral density .

[7 pts.] a) Design a maximum likelihood receiver for estimating the pair of transmitted symbols .

Now suppose due to problems of synchronization between the two senders, the transmitted pulses overlap. Spe-
cifically, the overall transmitted signal is now

where  gives the fraction of time of overlap.

[6 pts.] b) Assuming that the receiver maintains perfect synchronization with both senders, we plan to use the
following receiver structure:

and decide  if ,  if . Similarly we decide  if  and

 if . Compute the probabilities of detection error for both  and  (i.e., 

and ).

[7 pts.] c) Does the above scheme minimize the probabilities of detection error of the pair  (i.e.,

? Explain. If not, design one that does. (Hint: Are the signal waveforms of the
two senders orthogonal?)

Es

T
-----

T
0

gT t( )

t

gT t( )

gT t( ) gT t T–( )

1–

U t( ) XgT t( ) YgT t T–( )+=

⊕ ⊕ Receiver

W t( )
U t( )

X̂ Ŷ,( )
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