EECS 121, Spring 1996 Midterm #2

Note : Please answer all questions. Please answer with sufficient detail and clarity that there is no ambiguity about your answer.

Problem #1

The diagram show is that of a balanced modulator which is used to generate a DSB-SC AM signal.

Here $s_1(t) = A_c[1 + k_a m(t)] \cos(2\pi f_c t)$ and $s_2(t) = A_c[1 - k_a m(t)] \cos(2\pi f_c t)$ where k_a is a fixed constant called the *amplitude sensitivity* of the modulator.

The input message signal m(t) is a lowpass signal having the following Fourier transform:

Here we assume that $W \ll f_c$.

(a) Plot $S_I(f)$.

(b) Plot *S*(*f*).

Problem #2

Let $x(t) = \frac{1 - \cos t}{t}$. Find the corresponding Hilbert transform $\hat{X}(t)$.

Problem #3

Consider a bandpass signal $x(t) = V(t) \cos(2\pi f_0 t + \Theta(t))$ where $f_0 = 100$, $V(t) = \sin c^2(t)$, and $\Theta(t) = 2\pi \sin (2\pi t)$. Determine the output y(t) of the following system:

Here the lowpass filter transfer function is given by

$$H(f) = \begin{cases} 1, & |f| < 1\\ 0, & \text{otherwise} \end{cases}$$

Hint: Write $|\cos(2\pi f_0 t)|$ as a Fourier series.

Problem #4

Let *X* be a random variable with the density

$$f_{\chi}(x) = \begin{cases} \frac{x}{\sigma^2} e^{-\frac{x^2}{\sigma^2}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

Here $\sigma > 0$ is a parameter. Such a random variable is said to have a Rayleigh density.

(a) Find E[X]. (*Hint:* What is the variance of a Gaussian random variable?)
(b) Find Var(X).
(c) Let Y = X². Find the density of *Y*.

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact <u>examfile@hkn.eecs.berkeley.edu.</u>