University of California
College of Engineering
Department of Electrical Engineering
and Computer Science

Professor Wong
Spring 1994

EECS 121 -- MIDTERM 1 (Closed book and notes)

1. Consider a linear and time-invariant system (denoted by A) for which an input $x(t)=\cos 2(\mathrm{pi}) f t$ produces an output
$y(t)=1 /\left(1+(2(\mathrm{pi}) f)^{\wedge} 2\right) *(\cos 2(\mathrm{pi}) f t+(2(\mathrm{pi}) f) \sin 2(\mathrm{pi}) f t)$
Find the output $y(t)$ in each of the following situations.

2. Consider a narrowband signal
$x(t)=A(t) \cos (200(\mathrm{pi}) t+($ theta $)(t))$
where $A(t)=\left((\sin (\mathrm{pi}) t /((\mathrm{pi}) t))^{\wedge} 2\right.$ and $($ theta $)(t)=2(\mathrm{pi}) \sin 2(\mathrm{pi}) t$.
Find the output $y(t)$ of each of the following systems where $x(t)$ is the input:

The filter transfer functions are given by
$H_{1}(f)=1,|f|<=1 ;=0$ otherwise $\quad H_{2}(f)=1$, if $|f-100|<=1$ or $|f+100|<=1 ;=0$ otherwise
3. Let X be a random variable with a probabilty density function given by $P X=1 / 2|x|<=1 ;=0|x|>1$
a. Find $E|X|$
b. Let Y be another random variable whose conditional density given X is
$p(y \mid x)=1 / \operatorname{root}(2(\mathrm{pi})) * e^{\wedge}\left(-1 / 2 *(y-x)^{\wedge} 2\right)$
Find $E X Y$.
4. For each of the following functions $R(t, s)$, determine whether it can be an autocorrelation function. Explain.
a. $R(t, s)=e^{\wedge}(-|t-s|) * \cos 20(\mathrm{pi})(t-s)$
b. $R(t, s)=\cos ^{\wedge} 2(t+s)$
c. $R(t, s)=1-t-s+t s, 0<=s, t<=1$
5. Let X_{t} have a power spectral density function
$P_{\mathrm{x}}(f)=1,|f|<=1 ;=0$ otherwise
a. Find the autocorrelation function $R_{x}(\operatorname{tau})$.
b. Let X_{t} be the input and Y_{t} the output to a linear and time invariant system with transfer function $H(f)=e^{\wedge}(-|f|)$, -infinity $<f<$ infinity

Find the average power of the output $E\left|Y_{t}\right|^{\wedge} 2$.

