UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences

Professor David Tse

Spring 2000

EECS 121 — MIDTERM

(7:00-9:00 p.m., 8 Wednesday 2000)

Please explain your answers carefully. There are 100 total points and Question 4, part c) is a bonus.

Problem 1 (30 points)

[8 pts.] 1a)Argue that for any binary code satisfying the prefix-free condition, the codeword lengths $\{l_i\}$ must satisfy the Kraft's inequality:

$$\sum_{i} 2^{-l_i} \le 1$$

- [6 pts.] b) Is it true that for *any* source, the codeword lengths for the binary Huffman code must satisfy Kraft's inequality with equality? Explain.
- [6 pts.] c) Suppose now the coded symbols are from a general alphabet of size *D*. The Kraft inequality becomes:

$$\sum_{i} D^{-l_i} \le 1 \, .$$

Is it true that the Huffman code must satisfy Kraft's inequality with equality? Explain.

[10 pts.] d) Consider a source for which the letter probabilities are of the form 2^{-k} , where k is an integer. Construct the Huffman code and give the corresponding codeword lengths. Justify that the code is optimal.

Problem 2 (30 points)

Let $\{X(t)\}$ be a zero-mean WSS Gaussian process with autocorrelation function $R_x(\tau) = e^{-|\tau|}$.

- [6 pts.] a) Find its power spectral density.
- [8 pts.] b) Suppose we sample this process every *T* seconds. Is the resulting discrete-time process Gaussian? WSS? If so, compute its autocorrelation function.
- **[8 pts.]** c) Let $\{Y_n\}$ be the sampled process. We perform DPCM quantization by LLSE prediction of Y_n from Y_{n-1} . Find the distribution of the residual error $Y_n \hat{Y}_n$.
- **[8 pts.]** d) The residual error is quantized by a single bit quantizer to values $\pm \Delta$. Find the optimal choice of Δ as a function of *T*. What happens when $T \rightarrow 0$?

Problem 3 (20 points)

Here is one way to simulate white noise. Let $\{W_n\}$ be iid. rv's with $P(W_n = 1) = P(W_n = -1) = \frac{1}{2}$. For each *K*, define the continuous process $\{W^{(k)}(t)\}$ for $t \ge 0$ as follows:

$$W^{(k)}(t) = W_n \sqrt{K} \text{ for } \frac{n}{K} \le t \le \frac{n+1}{K}, \qquad n = 0, 1, 2, \dots$$

For large K, this can be used to approximate $\{W(t)\}$.

[4 pts.] a) Sketch a typical sample path of $\{W^{(k)}(t)\}$.

[10 pts.] b) Compute $Var[W^{(k)}(t)]$ and $Var\left[\int_{0}^{1} W^{(k)}(t)dt\right]$. Based on this calculation, explain why while $Var[W(t)] = \infty$, $Var\left[\int_{0}^{1} W(t)dt\right]$ is finite.

[6 pts.] c) A student does not like the fact that $Var[W(t)] = \infty$. He decides to use instead the approximation

$$Y^{(k)}(t) = W_n \text{ for } \frac{n}{K} \le t \le \frac{n+1}{K}, \quad n = 0, 1, 2$$

What is wrong with this noise model for *K* large?

Problem 4 (20 points)

A data stream is partitioned into blocks of two bits. A block is modulated onto a signal waveform, say on [0, 1]. Consider two modulation schemes:

- 1) Scheme A: The two bits are modulated into a 4-level PAM, with the 4 levels equally spaced and symmetric about 0.
- 2) Scheme B: The signal waveform is composed by separately modulating each bit into a 2-level PAM. The waveform for the first bit is on $\left[0, \frac{1}{2}\right]$, and the one for the second bit on $\left[\frac{1}{2}, 1\right]$. The levels are symmetric about 0.
- [6 pts.] a) Sketch the possible signal waveforms for both schemes.
- [14 pts.] b) Find an orthonormal basis for each scheme (on [0, 1]). What are the dimensions of the signal space? Sketch a geometric representation of the signal constellation.
- [6 pts.] c) BONUS: An important measure of a modulation scheme is the minimum distance between the constellation points. For a given minimum distance *d*, find the average energies required in both schemes. Which scheme is better in this respect? (You can assume that each of the four possible messages is equally likely.)