EE119 Introduction to Optical Engineering
 Spring 2003
 Midterm Exam

Name:

Signature:

 SID: \qquadCLOSED BOOK. ONE 8 1/2" X 11" SHEET OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED.

TIME ALLOTTED: 80 MINUTES
Fundamental constants you might need:
Planck's constant, $\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
Permittivity of free space, $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
Permeability of free space, $\mu_{0}=1.26 \times 10^{-6} \mathrm{H} / \mathrm{m}$
Speed of light in vacuum, $\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Electron charge, $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
Free electron mass, $m_{0}=9.1 \times 10^{-31} \mathrm{~kg}$
Electron volt, $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

1) Brewster's angle [20 points].
a) Determine the Brewster angle for external reflection at the surface of a glass plate with $n=1.5850$ immersed in water with $n=1.33$. [5 points]
b) At what refraction angle will the beam traverse the plate when light is incident at the polarization angle? [5 points]
c) Calculate the Brewster angle for light exiting the glass plate. [5 points]
d) For light incident on the plate under the conditions described above, if the incoming beam is p-polarized with intensity I_{0}, what is the intensity of the emerging beam? [5 points]
2) A thin lens with an aperture of 5 cm and a focal length of +3.50 cm has a 3.0 cm diameter stop located 1.50 cm in front of it. An object 1.50 cm high is located with its lower end on the axis, 8.0 cm in front of the lens. [30 points]
a) Determine the position and size of the entrance and exit pupils. [10 points]
b) Determine the position of the image point and the magnification. [10 points]
c) Sketch the chief ray and two marginal rays from the tip of the object. [10 points]

3) Your uncle has a far point at 2 meters. His eye is 2.0 cm long, but the overall power of his eye is not known. [20 points]
a) Is he nearsighted or farsighted? [5 points]
b) Specify the lens (in diopters) necessary to correct his vision. Be sure to give the correct sign. [10 points]
c) After getting his new glasses, Uncle Lee is happy and has normal visual acuity. As he is driving down the freeway, he is trying to read a sign far ahead of him. The letters on the sign are 20 cm high. At what distance from the sign will he be when he can first read it? [5 points]
4) You are the lens designer for a hot new video display startup company in Fremont. You must design a 2 lens system to project an uninverted image with a magnification of 50 onto a screen 250 cm away from the top-secret display device invented by the company founder. The mechanical designer tells you that Lens 1 must be located exactly 20 cm away from the object, but you have freedom to choose where to place Lens 2. The purchasing department already bought $5000,10 \mathrm{~cm}$ focal length lenses that fit into the mechanical mount for Lens 1 . Your job is determine the focal length and position for Lens 2. Give your answer for its position in terms of the separation between Lens 1 and Lens 2. [30 points.]

250 cm

