

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Midterm 2

EECS 42/100
Solution
FALL 2006

- One 8.5 " $\times 5.5$ " sheet with equations, two-sided. (originals only, handwritten; no computer output or photocopies, equations only, no problem solutions).
- No electronic devices (store calculators and phones in hallway).
- Copy your answers into marked boxes on exam sheets.
- Simplify numerical and algebraic results as much as possible.

Up to 10 points penalty for results that are not reasonably simplified.

- Mark your name and SID at the top of the exam and all extra sheets.
- Be kind to the graders and write legibly. No credit for illegible results.
- No credit for multiple differing answers for same problem.

Problem 1 [17 points]

In the circuit shown above, the switch opens at $\mathrm{t}=0$. Find an algebraic for $v_{c}(t), t>0$. Assume that the circuit has reached steady state at $\mathrm{t}=0$ (i.e. the node voltages are not changing just before the switch is closed).
Given: I1, R1, C1.
\square

Partial credit:

- Correct exponent: 5pts
- Correct at $\mathrm{t}=0$: 5 pts
- Correct at $\mathrm{t} \rightarrow$ infinity: 5pts
- Sign error: -3pts (each sign)

Problem 2 [17 points]

The voltage $v_{1}(t)$ in the above circuit is periodic with period T. Find an algebraic expression for the average power dissipated in R_{1}.
Given: $\mathrm{V}_{1}, \mathrm{~T}, \mathrm{R}_{1}$.

$$
P=\frac{V_{1}^{2}}{R_{1}}\left(\frac{1}{6}+\frac{1}{2}\right)=\frac{2}{3} \frac{V_{1}^{2}}{R_{1}}
$$

$$
\begin{aligned}
& \mathrm{P}_{1}=\frac{\mathrm{V}_{1}^{2}}{\mathrm{R}_{1}} \cdot \frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}_{2}}\left(\frac{\mathrm{t}}{\mathrm{~T}_{2}}\right)^{2} \mathrm{dt}=\frac{\mathrm{V}_{1}^{2}}{\mathrm{R}_{1}} \cdot \frac{1}{\mathrm{~T}} \cdot \frac{\mathrm{~T}_{2}^{3}}{3 \cdot \mathrm{~T}_{2}^{2}}=\frac{\mathrm{V}_{1}^{2}}{\mathrm{R}_{1}} \cdot \frac{1}{6} \\
& \mathrm{P}_{2}=\frac{\mathrm{V}_{1}^{2}}{\mathrm{R}_{1}} \cdot \frac{1}{2}
\end{aligned}
$$

Partial credit:

- P1 correct: 12 pts
- P2 correct: 5pts
- Penalty for 2x more power: -3pts

Problem 3 [17 points]

V1 is a sinusoidal source with frequency ω and amplitude V1. Find algebraic expressions for the actual (i.e. the power dissipated by the circuit) and reactive power delivered by the source.
Given: V1, ω, R1, C1.
\square

$$
P=\frac{V_{1}^{2}}{2} \cdot R \cdot \frac{(\omega \cdot C)^{2}}{1+(\omega \cdot R \cdot C)^{2}}
$$

$Q=-\frac{V_{1}^{2}}{2} \cdot \frac{1}{\omega \cdot C} \cdot \frac{(\omega \cdot C)^{2}}{1+(\omega \cdot R \cdot C)^{2}}=-\frac{V_{1}^{2}}{2} \cdot \frac{\omega \cdot C}{1+(\omega \cdot R \cdot C)^{2}}$
$Z(j \cdot \omega)=R+\frac{1}{j \cdot \omega \cdot C}=\frac{1+j \cdot \omega \cdot R \cdot C}{j \cdot \omega \cdot C}=\frac{j \cdot \omega \cdot C-\omega^{2} \cdot R \cdot C^{2}}{-\omega^{2} \cdot C^{2}}=R-\frac{j}{\omega \cdot C}=R+\frac{1}{j \cdot \omega \cdot C}$
$(|\mathrm{Z}(\mathrm{j} \cdot \omega)|)^{2}=\frac{1+(\omega \cdot \mathrm{R} \cdot \mathrm{C})^{2}}{(\omega \cdot \mathrm{C})^{2}}$
$\mathrm{P}=\mathrm{V}_{\mathrm{rms}} \cdot \mathrm{I}_{\mathrm{rms}} \cdot \cos (\Phi)=\mathrm{V}_{\mathrm{rms}} \cdot \frac{\mathrm{V}_{\mathrm{rms}}}{|\mathrm{Z}|} \cdot \frac{\mathrm{R}}{|\mathrm{Z}|}=\frac{\mathrm{V}_{1}{ }^{2}}{2} \cdot \frac{\mathrm{R}}{(|\mathrm{z}|)^{2}}$
Partial credit: (min penalty for any error: 2pts)

- P correct: 9pts
- Q correct: 9pts
- $|Z| \wedge 2$ correct: 6pts
- Correct eq for P, Q: 6pts

Derive an algebraic expression for $H(j \omega)=\frac{V_{3}(j \omega)}{V_{1}(j \omega)}$.
Given: R1, C1, R2, C2 (note: there are two capacitors with value C1 and two resistors with value R2).

$$
H(j \cdot \omega)=\frac{j \cdot \omega \cdot R_{1} \cdot C_{1}}{1+j \cdot \omega \cdot R_{2} \cdot C_{2}}
$$

$$
\begin{array}{ll}
i_{1}=v_{1} \cdot j \cdot \omega \cdot C & v_{2}=-R_{1} \cdot i_{1}=-v_{1} \cdot j \cdot \omega \cdot R_{1} \cdot C_{1} \\
i_{2}=\frac{v_{2}}{R_{2}} & v_{3}=-\frac{R_{2}}{1+j \cdot \omega \cdot R_{2} \cdot C_{2}} \cdot \frac{1}{R_{2}} \cdot v_{2} \\
H(j \cdot \omega)=\frac{v_{3}}{v_{1}}=\frac{v_{2}}{v_{1}} \cdot \frac{v_{3}}{v_{2}}=-\left(j \cdot \omega \cdot R_{1} \cdot C_{1}\right) \cdot\left(-\frac{1}{1+j \cdot \omega \cdot R_{2} \cdot C_{2}}\right)
\end{array}
$$

Partial credit:

- V2/V1 correct: 8pts
- V3/V2 correct: 8pts
- Sign error: -4pts
- Left as double fraction: -3pts
- Nominator error: -8pts
- Denominator error: -8pts

Problem 5 [17 points]
In the graph paper provided below draw the Bode plot for $H_{1}(j \omega)$ in green, $H_{1}(j \omega)$ in blue, and $H_{3}(j \omega)=H_{1}(j \omega) \times H_{2}(j \omega)$ in red.
Use piece-wise linear approximations of the magnitude (do NOT "round" the corners).
Note: neatness counts!
Given: $H_{1}(j \omega)=\frac{100 j \omega}{1+\frac{j \omega}{10}}, \quad H_{2}(j \omega)=\frac{j \omega}{1000}$

Partial credit: (max 15 pts for a solution that is only partially correct)

- H1 correct: 8pts
a. Breakpoint wrong: -5pts
b. Slope wrong: -4pts (each slope)
c. Gain error: -4pts (i.e. shifted vertically)
- H2 correct: 8pts
a. Slope wrong: -4 pts
b. Gain error: -4pts (i.e. shifted)
- $\mathrm{H} 3=\mathrm{H} 1+\mathrm{H} 2: 4 \mathrm{pts}$
- Penalty for H 3 != H1+H2: -5pts

Problem 6 [17 points]

An electronic filter has the magnitude response shown below (beyond $1 \mathrm{krad} / \mathrm{s}$ the magnitude response of the filter is zero). The filter is fed the following input:

$$
V_{i n}(j \omega)=0.5 \cos (t)+2 \sin (100 t)+3 \cos (10,000 t)
$$

Write an expression for the output voltage $V_{o u t}(j \omega)$ of the filter (assume that the filter does not change the phase of the input).

$$
V_{\text {out }}(j \omega)=50 \cos (t)+2000 \sin (100 t)
$$

Partial credit:

- Amplitude error: -6pts (each amplitude)
- Frequency error: -6pts (each frequency)
- Magnitude at 10k not zero: -6pts

