

Midterm 1
Solution

EECS 42/100
FALL 2006

- Closed book, closed notes.
- No calculators.
- Copy your answers into marked boxes on exam sheets.
- Simplify numerical and algebraic results as much as possible.

Up to 10 points penalty for results that are not reasonably simplified.

- Mark your name and SID at the top of the exam and all extra sheets.
- Be kind to the graders and write legibly. No credit for illegible results.
- No credit for multiple differing answers for same problem.

Grading:

- Max partial credit for any problem: 23pts (25pts only for correct results)
- Sign error: -3pts
- Result in terms of G's (rather than R's): -3pts

Problem 1 [25 points]

Find an algebraic expression for V_{o}. Assume that the operational amplifier is ideal.

$$
V_{o}=\left(I_{1}-\frac{V_{1}}{R_{4}}\right)\left(R_{1} \| R_{3}\right)=\left(I_{1}-\frac{V_{1}}{R_{4}}\right) \frac{R_{1} R_{3}}{R_{1}+R_{3}}
$$

Partial credit:

- I1 term: 12 pts max
- V1 term: 13 pts max
- Sign error -3pts
- If result wrong but recognized that I2, R2, R5 are irrelevant: 4pts each
- Recognized R1//R3: 8pts

Problem 2 [25 points]

Find an algebraic expression for V_{x}.

$$
V_{x}=\left(V_{1}-l_{1} R_{5}\right) \frac{R_{6}}{R_{5}+R_{6}}
$$

Partial credit:

- V1 term: 12 pts max
- I1 term: 13 pts max
- Sign error -3pts (each sign)
- If result wrong but recognized that independent of
o R2: 4pts
o R1: 5pts
0 R3: 5pts
o R4: 7pts
- If result wrong but attempted to solve with superposition: 6pts

Problem 3 [25 points]

Draw a Norton equivalent for terminals (A, B) in the circuit shown above and specify algebraic expressions for the element values.

Partial credit:

- Equivalent circuit: 10pts
- $\mathbf{I}_{\mathrm{N}}: 5 \mathrm{pts}$
- \mathbf{R}_{N} : 10pts (Voc only: 8pts)
- Sign errors: -3pts

Problem 4 [25 points]

Find an algebraic expression for the power delivered to the circuit by the controlled current source I1.
$i_{x}=\frac{-V_{1}}{R_{2}(1-A)+R_{3}}$
$V_{x}=-i_{x} R_{3}$
$P=-V_{x} A i_{x}=A R_{3} i_{x}^{2}$

$$
P=A R_{3}\left(\frac{V_{1}}{R_{2}(1-A)+R_{3}}\right)^{2}
$$

Partial credit:

- Power $-\mathrm{Vx}^{*} \mathrm{~A}^{*}$ ix is 10 pts
- $\quad I x=f(V 1, R 2, R 3, A)$ is 18pts
- Vx is 10 pts (5 pts for -ix*R3)
- Correct units (result ~V1^2: 8pts)
- Sign errors: -3pts

