Problem 1 - Short Answers (8 points)

If you make any assumption that you think might be unclear to the grader, mark that question with an asterisk (*) in the right-hand margin and explain your assumption on the back of the page. Note that some of the non-true/ false questions may have more than one correct answer.
[1 pt.] (a) $\mathrm{T} \int_{\mathrm{F}}^{\text {__ }}$ The peak value of the AC voltage at the wall outlets in your lab in Cory Hall is 170 volts.
[1 pt.] (b) $\mathrm{T} \quad$ _ F _ An ideal discharged capacitor is a nonlinear component.
[1 pt.] (c) $\mathrm{T} \quad \mathrm{F} X$ A phasor voltage V is a function of time.
[1 pt.] (d) Name a component or device that turns a steady current into a steady voltage.
Answer: \qquad Resistor
[1 pt.] (e) Name a two-terminal component that can never pass a steady current with a steady voltage applied.
Answer: \qquad
[2 pts.] (f) Name two components or devices that can increase the amplitude of an AC voltage.

[1 pt.] (g) Name a component or device that can use a steady voltage to control a steady current.
Answer: \qquad source
[6 pts.] (a) Determine the Thévenin equivalent of the following circuit using phasors:

$A: C=10^{-8} \mathrm{~F}, \omega R C=1 \quad B: C=3 \times 10^{-8} \mathrm{~F}, \quad \omega R C=3$

$$
\begin{aligned}
V_{0 c} & =V_{T H}=V_{0} \cdot \frac{R}{R+1 / j \omega c}=\frac{j \omega R C}{1+j \omega R C} V_{0} \\
& =V_{0} \cdot \frac{j \omega R C}{1+j \omega R c} \cdot \frac{1-j \omega R c}{1-j \omega R C}=\frac{\omega^{2} R^{2} c^{2}+j \omega R C}{1+\omega^{2} R^{2} c^{2}}
\end{aligned}
$$

$$
A: \underline{V}_{\mathrm{TH}}=\frac{1+j}{2} V_{0} \quad \underline{z}_{\mathrm{TH}}=\frac{100-100 j}{2} \quad \underline{z}_{T H}=\frac{R \cdot 1 / j \omega c}{R+1 / j \omega \mathrm{C}}=\frac{R}{H_{j} j \omega R \mathrm{C}}
$$

(Express answers in simplest rectangular form $A+B_{j}$.)
B:

$$
\begin{aligned}
\underline{V}_{T H}=\frac{9+3 j}{10} V_{0} \quad Z_{T H} & =\frac{100-300 j}{10} \\
& =10-30 j
\end{aligned}
$$

$$
\underline{Z_{H}}=\frac{R(1-j \omega R C)}{1+\omega^{2} R^{2} C^{2}}
$$

[$\mathbf{3} \mathbf{~ p t s .] ~ (b) ~ W h a t ~ i s ~ t h e ~ t i m e ~ a v e r a g e ~ p o w e r ~ i n ~ t h e ~} 100$ ohm resistor?

$$
\begin{aligned}
& A: P_{\text {ave }}= \\
& A: \frac{1}{200} \cdot\left(\frac{1 \cdot \sqrt{2}}{2} V_{0}\right)^{2}=\frac{1}{2} \operatorname{Re}\left[V I^{*}\right]=\frac{1}{2} \operatorname{Re}\left[V_{T H} \cdot \frac{V_{T H}^{*}}{R}\right] \\
& B: \frac{1}{200} \cdot\left(\frac{3 \cdot \sqrt{10}}{10}\right)_{V_{0}^{2}}^{2}=\frac{9}{2 R}\left|V_{T H}\right|^{2},\left|V_{T H}\right|=\frac{\sqrt{\omega^{4} R^{4} C^{2}+\omega^{2} R^{2} C^{2}}}{1+\omega^{2} R^{2} C^{2}} \cdot V_{d} \\
&=\frac{\omega R C \sqrt{\omega^{2} \Gamma^{2} C^{2}+1}}{1+\omega^{2} R^{2} C^{2}} \cdot\left|V_{0}\right|
\end{aligned}
$$

[4 pts.] (c) The output voltage is of the form $v_{1}(t)=V_{1} \cos (\omega t+\phi)$. Determine V_{1} and ϕ.

$$
V_{1}=\left|V_{T H}\right| \quad \phi=\Varangle V_{T H} \quad \psi V_{T H}=\Varangle \frac{g \omega R C}{\omega^{2} R^{2} C^{2}}=\gamma \frac{1}{\omega R C}
$$

(Express answers in simplest rectangular form $A+B_{j}$.)

$$
\begin{array}{ll}
A:\left|V_{T H}\right|=\frac{\sqrt{2}}{2} V_{0} & \Varangle V_{T H}=\tan ^{-1} 1 \\
B:\left|V_{T H}\right|=\frac{3 \sqrt{10}}{10} V_{0} & \Varangle V_{T H}=\tan ^{-1} 1 / 3
\end{array}
$$

Problem 3 - Phasors (18 points)

where $V_{\text {in }}(t)=\cos (\omega t)$ and $L=2 \times 10^{-4} \mathrm{H}, R=200 \Omega$
[2 pts.] (a) What is $\left|V_{\text {out }}(t)\right|$ for $\omega=0$?
Since C is open circuit
[2 pts.] (b) What is $\left|V_{\text {out }}(t)\right|$ for $\omega \rightarrow \infty$?

[8 pts.] (c) What is $\left|V_{\text {out }}(t)\right|$ for $\omega=10^{6}$? \square

$$
i=\frac{V_{i n}}{100}
$$

$$
\underline{V}_{\text {out }}=\frac{V_{\text {in }}}{100} \cdot(100+100 j)
$$

$$
20 j \begin{cases}200 \quad \frac{200 \cdot 200 j}{200+200 j}=\frac{200 j}{1+j}=\frac{200 j(1-j)}{2} & =\operatorname{Vin} \cdot(1+j)\end{cases}
$$

$$
=100+100 j=\left.\cdots \frac{V_{\text {at }}}{V_{\text {in }}}\right|_{W=10^{6}}=\sqrt{2}
$$

[6 pts.] (d) Let $G(\omega)=\frac{V_{\text {out }}}{\underline{\underline{V_{\text {in }}}}}$. Sketch the general behavior of $|G(\omega)|$ vs. ω on axes provided. (Note linear scales.)

Cheek $G\left(\omega=5+10^{6}\right) \approx 1$

Problem 4 - Short Answers (15 points)

A circuit made with three ideal op amps is shown below:
version A

[6 pts.] (a)Of what three basic op-amp circuits is this circuit composed? (Circle them individually.)
Sub-circuit with output v_{a} is an inverting amplifier
Sub-circuit with output v_{b} is non-invertivy amplifier
Sub-circuit with output v_{o} is inverting summing amplifier
[9 pts.] (b)Find the voltages v_{a}, v_{b}, and v_{o} in terms of v_{1} and v_{2}. Make your methods clear to the grader.

$$
\begin{array}{rlrl}
v_{a} & =\frac{-3 v_{1}}{3 v_{2}} & \frac{v_{1}}{2 k} & =-\frac{v_{a}}{6 k}, v_{a} \\
v_{b} & =-3 v_{1} \\
v_{0} & =\frac{6 v_{1}-2 v_{2}}{v_{b} \cdot \frac{4}{12}}=v_{2}, v_{b}=3 v_{1} \\
-\frac{v_{0}}{10 k} & =\frac{v_{a}}{5 k}+\frac{v_{b}}{15 k} \\
v_{0} & =-2 v_{a}-\frac{2}{3} v_{b} \\
& =6 v_{1}-2 v_{2}
\end{array}
$$

Problem 5 (20 points)
An ideal op amp is shown with its input sources and its power supplies.
version A

version B

Given $v_{2}=\left\{\begin{array}{l}-2 v \\ -v\end{array}\right\}$, plot V_{0} vs. V_{1} for $-3 \leq v_{1} \leq 3$ volts.

Version A
in negative feedback $v \approx v+$

$$
\begin{aligned}
& \frac{v_{1}-(-2 v)}{10 k}=\frac{-2 v-v_{0}}{60 k} \\
& 10\left(v_{1}+2\right)=-2-v_{0}
\end{aligned}
$$

$$
v_{0}=-5 v_{1}-6
$$

Problem 6 (10 points)

A DC circuit that was connected up one week ago is shown attached to a Very Strange Component whose I-V characteristic is shown. find I and V for this circuit. Make your method clear for the grader and state any assumplions you make.

$$
\begin{aligned}
& I_{o}=0.5 \mathrm{~mA} \\
& R=10 \mathrm{k} \Omega \\
& C=300 \mu \mathrm{~F}
\end{aligned}
$$

load line by keck

$$
T_{0}-\frac{V}{R}-I=0, I=I_{0} \frac{-V}{R}
$$

version B

$$
\begin{aligned}
I_{o} & =1 \mathrm{~mA} \\
R & =3 k \Omega \\
C & =100 \mu \mathrm{~F}
\end{aligned}
$$

$I=03 n A$

Bistable - circuit cold be in either state.

$$
I=0 \cdot \ln A
$$

$$
V=2.6 \mathrm{~V}
$$

$$
\text { or } I=2 \mathrm{mt}
$$

$$
V=-3.7 \mathrm{~V}
$$

Problem 7 (16 points) KEY

[3 pts.] (a) What is i_{D} as a function of $V_{D S}$?
[3 pts.] (b) What is $V_{G S}$ as a function of i_{D} ?
[10 pts.] (c)What is $V_{D S}$ at quiescent point?
(Hint: $i_{D}=K\left(V_{G S}-V_{t_{0}}\right)^{2}$. If needed,
you may use $\sqrt{2} \approx 1.4, \sqrt{3} \approx 1.7$.)

$$
\dot{i}_{0}=k\left(V_{c s}-V_{t_{0}}\right)^{2}
$$

consibstitute $i_{i}=\frac{2 V-V_{\text {Gs }}}{2000}$ from (b).

$$
\begin{aligned}
& \frac{2 V-V_{G S}}{2000}=K\left(V_{G S}-1\right)^{2} \\
& 2 V-V_{G S}=V_{G-S}^{2}-2 V_{G-S}+1 \\
& V_{G S}^{2}-V_{G-S}-1 V=0 \\
& V_{G S}=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& V_{t_{0}}=1 \mathrm{~V} \text { (threshold voltage) } \\
& K=\frac{500 \mu \mathrm{~A}}{V^{2}}
\end{aligned}
$$

$$
i_{D}=\frac{10 V-V D 5}{3 K \Omega}
$$

$$
v_{G S}=2 V-i_{D}(2 k \Omega)
$$

$$
v_{D S} \approx 9.46 \text { volts }
$$

$$
\sqrt{5} \approx 2,2 \text {, So } V_{G 51}=\frac{1}{2}(1-2,2)<0
$$

not passible.

$$
\begin{aligned}
V_{G S 2} & =\frac{1}{2}(1+2.2) \\
& =\frac{3.2}{2}=1.6 \mathrm{~V} .
\end{aligned}
$$

Now solve for i_{D}

$$
\begin{aligned}
i_{0} & =K(1.6-1)^{2} \quad(\text { note } 6 \times 6=36) \\
& =\left(500 \times 10^{-6}\right)(0.36) \quad\left(\frac{18}{36}\right) \\
& =\left(1000 \times 10^{-6}\right)(0.18) \quad \\
& =0.18 \mathrm{~mA} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now } \\
& V_{D S}=10 \mathrm{~V}-(3000)(018 \mathrm{~mA}) \\
&=10 \mathrm{~V}-0.54=9.46
\end{aligned}
$$

$(2 \times 3 \times 9=54)$

7 of 7

