Midterm 1

Name: \qquad

SID: \qquad

Section time: \qquad F 10-11 __F 11-12 \qquad F 2-3

You may open the exam and start working at $3: 40 \mathrm{pm}$. The exam ends at $4: 55 \mathrm{pm}$. You may not use lecture notes or books. You may use one single-sided 8.5 " $\times 11$ " sheet of notes. You may not use a calculator.

Show all work. Write out proofs in enough detail to convince us that you know exactly how the reasoning for each step works.

1	
2	
3	
4	
Total:	

1. Quick Questions

(a) (3 pts) You want to prove by contradiction the statement "If n is even then n^{3} is even." The first sentence in your proof should be the following (circle one option in each pair):

Let $\left\{\mathrm{n}, \mathrm{n}^{3}\right\}$ be $\{$ even, odd $\}$. Suppose $\left\{\mathrm{n}, \mathrm{n}^{3}\right\}$ is $\{$ even, odd $\}$.
(b) (4 pts) Conpute $5^{17} \bmod 7$.
(c) (6 pts) Let $P(x, y)$ be the proposition, for integers x and y, that " $x+y=x-y$ ". Which of the following statement are true? Explain each answer in 1 sentence.
i.. $\forall x . \exists y . P(x, y)$
ii. $\exists y . \forall x . P(x, y)$
iii. $\forall y . \exists x \cdot P(x, y)$
(d) (3 pts) Write the negation of 1(c)iii above (that is, $\neg \forall y . \exists x . P(x, y))$ in terms of the proposition $Q(x, y)$, which states that $x+y \neq x-y$ (that is, $Q(x, y) \equiv \neg P(x, y))$. Use De Morgan's law to simplify.
(e) (6 pts) For each of the following pairs, is there a graph with n vertices and m edges that has an Eulerian Tour? Give an example or briefly explain why not. For the putposes of this problem, graphs may not have "self-loops" (edges from that start and end at the same vertex), but may have parallel edges (several edges connecting the same two endpoints).
(a) $(n=6, m=6)$
(a) $(n=6, m=7)$
(a) $(n=6, m=3)$

2. Variants of Induction (12 pts)

Consider the following two variants of induction.
(a) Let P be a property of positive integers, and suppose you have proved that i. $P(1)$ is true;
ii. For every $n \geqq 1, P(n) \longleftrightarrow P(n+3)$
iii. For every $n \geqq 1, P(n) \longleftrightarrow P(n+5)$

Does it follow that $P(n)$ is true for every $n \geqq 1$? Either prove that, for every P that satisfies properties (i), (ii), (iii), $P(n)$ must be true for every $n \geqq 1$, or provide a counterexample.
(A counterexample is a property P that is false for some $n \geqq 1$, even though is satisfies properties (i), (ii), (iii).)
(b) Let P be a property of positive integers, and suppose you have proved that
i. $P(1)$ is true;
ii. For every $n \geqq 1, P(n) \longleftrightarrow P(n+4)$
iii. For every $n \geqq 1, P(n) \longleftrightarrow P(n+6)$

Does it follow that $P(n)$ is true for every $n \geqq 1$? Either prove that, for every P that satisfies properties (i), (ii), (iii), $P(n)$ must be true for every $n \geqq 1$, or provide a counterexample (in the same sense of "counterexample" as above).
3. Solving Systems of Equations (10 pts)

Solve for x and y (show all steps):

$$
\begin{aligned}
2 x+3 y & \equiv 2(\bmod 13) \\
x+5 y & \equiv 3(\bmod 13)
\end{aligned}
$$

4. Secret Sharing (10 pts)

In a 3 -out-of- 5 secret sharing system, a secret $s \in\{0,1,2,3,4,5,6\}$ is shared among 5 people.
Two random numbers a, b are chosen to define the polynomial $p(x)=a x^{2}+b x+s$, and then shares $p(1), \cdots, p(5)$ are given to the five people. (All operations are done mod 7)
Three of them get together, and share that $p(1) \equiv 3(\bmod 7), p(3) \equiv 0(\bmod 7)$ and $p(4) \equiv 0(\bmod 7)$.
What is the secret?

