Midterm 1

Name: _____

SID: _____

Section time: __F 10-11 __F 11-12 __F 2-3

You may open the exam and start working at 3:40pm. The exam ends at 4:55pm. You may not use lecture notes or books. You may use one single-sided 8.5" x 11" sheet of notes. You may not use a calculator.

Show all work. Write out proofs in enough detail to convince us that you know exactly how the reasoning for each step works.

1	
2	
3	
4	
Total:	

1. Quick Questions

(a) (3 pts) You want to prove by contradiction the statement "If n is even then n³ is even." The first sentence in your proof should be the following (circle one option in each pair):

Let $\{n, n^3\}$ be $\{\text{even}, \text{odd}\}$. Suppose $\{n, n^3\}$ is $\{\text{even}, \text{odd}\}$.

(b) (4 pts) Conpute $5^{17} \mod 7$.

- (c) (6 pts) Let P(x,y) be the proposition, for integers x and y, that "x + y = x y". Which of the following statement are true? Explain each answer in 1 sentence.
 - i.. $\forall x. \exists y. P(x, y)$ ii. $\exists y. \forall x. P(x, y)$
 - iii. $\forall y$. $\exists x. P(x, y)$
- (d) (3 pts) Write the negation of 1(c)iii above (that is, $\neg \forall y$. $\exists x. P(x,y)$) in terms of the proposition Q(x,y), which states that $x + y \neq x y$ (that is, $Q(x,y) \equiv \neg P(x,y)$). Use De Morgan's law to simplify.
- (e) (6 pts) For each of the following pairs, is there a graph with *n* vertices and *m* edges that has an Eulerian Tour? Give an example or briefly explain why not. For the putposes of this problem, graphs *may not* have "self-loops" (edges from that start and end at the same vertex), but *may* have parallel edges (several edges connecting the same two endpoints).

(a)
$$(n = 6, m = 6)$$
 (a) $(n = 6, m = 7)$ (a) $(n = 6, m = 3)$

2. Variants of Induction (12 pts)

Consider the following two variants of induction.

(a) Let *P* be a property of positive integers, and suppose you have proved thati. *P*(1) is true;

ii. For every $n \ge 1$, $P(n) \iff P(n+3)$

iii. For every $n \ge 1$, $P(n) \iff P(n+5)$

Does it follow that P(n) is true for every $n \ge 1$? Either prove that, for every P that satisfies properties (i), (ii), (iii), P(n) must be true for every $n \ge 1$, or provide a counterexample.

(A counterexample is a property *P* that is false for some $n \ge 1$, even though is satisfies properties (i), (ii), (iii).)

(b) Let *P* be a property of positive integers, and suppose you have proved thati. *P*(1) is true;

ii. For every $n \ge 1$, $P(n) \iff P(n+4)$

iii. For every $n \ge 1$, $P(n) \iff P(n+6)$

Does it follow that P(n) is true for every $n \ge 1$? Either prove that, for every P that satisfies properties (i), (ii), (iii), P(n) must be true for every $n \ge 1$, or provide a counterexample (in the same sense of "counterexample" as above).

3. Solving Systems of Equations (10 pts)

Solve for *x* and *y* (show *all* steps):

$$2x + 3y \equiv 2 \pmod{13}$$
$$x + 5y \equiv 3 \pmod{13}$$

4. Secret Sharing (10 pts)

In a 3-out-of-5 secret sharing system, a secret $s \in \{0,1,2,3,4,5,6\}$ is shared among 5 people. Two random numbers *a*, *b* are chosen to define the polynomial $p(x) = ax^2 + bx + s$, and then shares $p(1), \dots, p(5)$ are given to the five people. (All operations are done mod 7) Three of them get together, and share that $p(1) \equiv 3 \pmod{7}$, $p(3) \equiv 0 \pmod{7}$ and $p(4) \equiv 0 \pmod{7}$. What is the secret?