Midterm 1

1. (10 points)

• Is it possible for the propositions $P \lor Q$ and $\neg P \lor \neg Q$ to be both false? Justify your answer.

Solution. No. If $P \lor Q$ is false, then both P and Q are false, so $\neg P \lor \neg Q$ is true.

- Is it possible for the proposition $P \Rightarrow (\neg P \Rightarrow Q)$ to be false? Justify your answer. Solution. No. $A \Rightarrow B$ is true whenever A is false. So for the proposition to be false P must be true. But then $\neg P \Rightarrow Q$ is also true. Thus the proposition is true.
- 2. (10 points) Suppose you are proving a proposition P(n) by induction on n. You successfully prove the induction step, $\forall n, P(n) \Rightarrow P(n+1)$. But then you notice that P(2501) is false. Can you conclude anything about P(25)? Justify your answer.

Solution. You can conclude that P(25) is false. If P(25) were true, you could use that as the base case of your induction and conclude that $\forall n, \geq 25P(n)$. But since P(2501) is false, this is a contradiction.

3. (20 points) Recall that the Fibonacci numbers F(n) satisfy the recurrence F(n) = F(n-1) + F(n-2), with F(0) = F(1) = 1. Prove by induction on n that F(m+n) = F(m)F(n) + F(m-1)F(n-1).

Solution. As suggested, we will prove the proposition

$$P(n): F(m+n) = F(m)F(n) + F(m-1)F(n-1)$$

by induction on n; the natural number m is fixed, but since we're not going to assume anything about it in the proof, our argument will establish the claim for all m and n.

• **Base case**: We want to prove P(1), but this just says that

$$F(m+1) = F(m) + F(m-1),$$

and this holds by definition.

• Inductive Step: We assume that the statement holds for 1, ..., n, and we want to prove it for n + 1:

$$\begin{split} F(m+n+1) &= F(m+n) + F(m+n-1) \\ &= F(m)F(n) + F(m-1)F(n-1) + F(m)F(n-1) + F(m-1)F(n-2) \\ &= F(m)(F(n) + F(n-1)) + F(m-1)(F(n-1) + F(n-2)) \\ &= F(m)F(n+1) + F(m-1)F(n), \end{split}$$

which is what we wanted to show.

4. (15 points) Evaluate $100^{50^{25^{10^5}}} \mod 47$.

Solution. This problem is being graded as an extra-credit problem. The main idea is that if $N = p \cdot q$ then $a^{(p-1)(q-1)} = 1 \mod N$. So the exponent $50^{25^{10^5}}$ has to be evaluated mod46 = $2 \cdot 23$. So the exponent 25^{10^5} has to be evaluated mod22 = $2 \cdot 11$. So the exponent 10^5 has to be evaluated mod10, and is therefore 0. So the exponent in the previous line is 1. So the problem is reduced to evaluating $100^{50} \mod 47 = 6^4 \mod 47 = 48 \cdot 27 \mod 47 = 27 \mod 47$.

5. (10 points) Alice has chosen her modulus for RSA to be $N = 187 = 17 \cdot 11$. She wishes to use an encryption exponent 3. What is her decryption exponent. Now suppose she wishes to sign a contract c. How would she accomplish this?

Solution. Alice's decryption exponent is $3^{-1} \mod 16 \cdot 10 = 107$. To sign a message c, Alice just decrypts c by computing $c^{107} \mod 187$.

- 6. (15 points)
 - Suppose two polynomials P(x) and Q(x) of degree d intersect at k points. i.e. there are k values for x such that P(x) = Q(x). What can you say about k? Solution. P(x) - Q(x) is a polynomial of degree at most d and therefore can have at most d roots. Thus $k \leq d$.
 - Let P(x) be an unknown polynomial of degree 6 over the field GF(q). Suppose that you are given the values P(1), P(2), P(3), P(4), P(5). As a function of q, how many possible (combinations of) values are there for:

Since P(x) is of degree 6, it is uniquely specified by its values at 7 points. Therefore the answers are as follows:

$$- P(6).$$

 q
 $- P(6) \text{ and } P(7).$
 $q^2.$

- P(6), P(7) and P(8). q^2 . Since specifying P(6) and P(7) uniquely determines P(8).