Midterm 1

1. (10 points)

- Is it possible for the propositions $P \vee Q$ and $\neg P \vee \neg Q$ to be both false? Justify your answer.
Solution. No. If $P \vee Q$ is false, then both P and Q are false, so $\neg P \vee \neg Q$ is true.
- Is it possible for the proposition $P \Rightarrow(\neg P \Rightarrow Q)$ to be false? Justify your answer.

Solution. No. $A \Rightarrow B$ is true whenever A is false. So for the proposition to be false P must be true. But then $\neg P \Rightarrow Q$ is also true. Thus the proposition is true.
2. (10 points) Suppose you are proving a proposition $P(n)$ by induction on n. You successfully prove the induction step, $\forall n, P(n) \Rightarrow P(n+1)$. But then you notice that $P(2501)$ is false. Can you conclude anything about $P(25)$? Justify your answer.
Solution. You can conclude that $P(25)$ is false. If $P(25)$ were true, you could use that as the base case of your induction and conclude that $\forall n, \geq 25 P(n)$. But since $P(2501)$ is false, this is a contradiction.
3. (20 points) Recall that the Fibonacci numbers $F(n)$ satisfy the recurrence $F(n)=F(n-$ 1) $+F(n-2)$, with $F(0)=F(1)=1$. Prove by induction on n that $F(m+n)=$ $F(m) F(n)+F(m-1) F(n-1)$.
Solution. As suggested, we will prove the proposition

$$
P(n): F(m+n)=F(m) F(n)+F(m-1) F(n-1)
$$

by induction on n; the natural number m is fixed, but since we're not going to assume anything about it in the proof, our argument will establish the claim for all m and n.

- Base case: We want to prove $P(1)$, but this just says that

$$
F(m+1)=F(m)+F(m-1)
$$

and this holds by definition.

- Inductive Step: We assume that the statement holds for $1, \ldots, n$, and we want to prove it for $n+1$:

$$
\begin{aligned}
F(m+n+1) & =F(m+n)+F(m+n-1) \\
& =F(m) F(n)+F(m-1) F(n-1)+F(m) F(n-1)+F(m-1) F(n-2) \\
& =F(m)(F(n)+F(n-1))+F(m-1)(F(n-1)+F(n-2)) \\
& =F(m) F(n+1)+F(m-1) F(n)
\end{aligned}
$$

which is what we wanted to show.
4. (15 points) Evaluate $100^{50^{25^{10^{5}}}} \bmod 47$.

Solution. This problem is being graded as an extra-credit problem. The main idea is that if $N=p \cdot q$ then $a^{(p-1)(q-1)}=1 \bmod N$. So the exponent $50^{25^{10^{5}}}$ has to be evaluated $\bmod 46=2 \cdot 23$. So the exponent $25^{10^{5}}$ has to be evaluated $\bmod 22=2 \cdot 11$. So the exponent 10^{5} has to be evaluated mod10, and is therefore 0 . So the exponent in the previous line is 1 . So the problem is reduced to evaluating $100^{50} \bmod 47=6^{4} \bmod 47=$ $48 \cdot 27 \bmod 47=27 \bmod 47$.
5. (10 points) Alice has chosen her modulus for RSA to be $N=187=17 \cdot 11$. She wishes to use an encryption exponent 3 . What is her decryption exponent. Now suppose she wishes to sign a contract c. How would she accomplish this?

Solution. Alice's decryption exponent is $3^{-1} \bmod 16 \cdot 10=107$. To sign a message c, Alice just decrypts c by computing $c^{107} \bmod 187$.
6. (15 points)

- Suppose two polynomials $P(x)$ and $Q(x)$ of degree d intersect at k points. i.e. there are k values for x such that $P(x)=Q(x)$. What can you say about k ?
Solution. $P(x)-Q(x)$ is a polynomial of degree at most d and therefore can have at most d roots. Thus $k \leq d$.
- Let $P(x)$ be an unknown polynomial of degree 6 over the field $G F(q)$. Suppose that you are given the values $P(1), P(2), P(3), P(4), P(5)$. As a function of q, how many possible (combinations of) values are there for:

Since $P(x)$ is of degree 6 , it is uniquely specified by its values at 7 points. Therefore the answers are as follows:
$-P(6)$.
q

- $P(6)$ and $P(7)$. q^{2}.
- $P(6), P(7)$ and $P(8)$. q^{2}. Since specifying $P(6)$ and $P(7)$ uniquely determines $P(8)$.

