1. (50 points) Short Answer Grab Bag

True or False

T F If a has an inverse modulo b, then b has an inverse modulo a.
T F If $\mathrm{ax} \equiv \mathrm{bx} \bmod \mathrm{c}$, then $\mathrm{a} \equiv \mathrm{b} \bmod \mathrm{c}$
T \mathbf{F} The propose and reject algorithm for stable marriage always lasts for at least two days.
T F It is possible that man M is paired with woman W in both a man optimal pairing and a woman optimal pairing.
T F The converse of the statement "if n is odd then so is $n^{4 "}$, is "if n is not odd then n is not odd".
T F In a proof by contraposition of the statement "if n is odd then so is $\mathrm{n}^{4 "}$, you would assume that n is not odd.

T F In a proof by contradiction of the statement "if n is odd then so is $\mathrm{n}^{4,}$, you would assume that n is odd and n^{4} is even.
T F There are 49 polynomials $\mathrm{P}(\mathrm{x})$ of degree (at most) 3 over the field GF_{7} such that $\mathrm{P}(5)=6$.
T F In an [n, 2] secret sharing scheme (i.e. any two players can reconstruct the secret) modulo 19, player 1 and player 6 together try to reconstruct the secret. Suppose player 1's share is 2 and player 6's share is 9 , then the secret must be 12 .
T F There are at least two distinct polynomials of degree 5 over GF_{19} that have the same values at 5 distinct points.

For the following parts assume that $\mathrm{P}(\mathrm{n})$ and $\mathrm{Q}(\mathrm{n})$ are predicates on the natural numbers, and suppose:

$$
\forall k \in N, P(k) \Rightarrow Q(k+1), \text { and } \forall k \in N, Q(k) \Rightarrow P(k+1)
$$

For each of the following assertions below, circle the correct alternative: (A) it must always hold, or (N) it can never hold, or (C) it can hold but need not always. The domain of all quantifiers is the natural numbers.

A N C $\quad(P(0) \vee Q(0)) \Rightarrow \forall n P(n)$
A N C $\quad(P(0) \wedge Q(0)) \Rightarrow \forall n P(n)$
A N C $\quad(P(0) \wedge Q(0)) \Rightarrow \forall n(P(n) \wedge Q(n))$
A N C $\quad(P(0) \vee Q(0)) \Rightarrow \forall n(P(n) \vee Q(n))$
A N C $\quad(\neg P(201) \wedge \neg Q(201)) \Rightarrow(\neg P(0) \vee \neg Q(0))$

CS70, Fall 2006, Midterm 1, Papadimitriou \& Vazirani
2. (30 points) Induction

Prove by induction that for every odd number $n, 3^{n}+4^{n}$ is divisible by 7 .

State formally the statement you are proving by induction:

Proof by induction on:

Base Case:

Induction Hypothesis:

Induction Step:

CS70, Fall 2006, Midterm 1, Papadimitriou \& Vazirani
3. (20 points) Modular Arithmetic

Solve for x and y :
$3 x+5 y=2 \bmod 19$
$7 x+3 y=8 \bmod 19$

