Problem \#1 (18 pts.) Short-answer questions

(a) $\mathrm{C}(\mathrm{n}, \mathrm{i}) / 2^{\wedge} \mathrm{n}$
(b) $0.3<=\operatorname{Pr}[\mathrm{E}$ union F$]<=0.5 .0 .3$ occurs if E is a subset of F , and 0.5 occurs if E and F are disjoint.
(c) 2002 , since each such string is of the form $[\mathrm{k}] 1[2000-\mathrm{k}] 0$ (where the quantity in brackets indicates the number of times to repeat) for some k in $\{0,1, \ldots, 2001\}$, and there are 2002 such k .
(d) All of them, since $2 \mathrm{z}=\mathrm{n}+1=1(\bmod \mathrm{n})$, so z -inverse $=2(\bmod \mathrm{n})$. (Alternate explanation: $\operatorname{gcd}((\mathrm{n}+1) / 2, \mathrm{n})$ $=\operatorname{gcd}((\mathrm{n}+1) / 2,(\mathrm{n}-1) / 2)=\operatorname{gcd}(1,(\mathrm{n}-1) / 2)=1$ by Euclidean algorithm, $\operatorname{so} \operatorname{gcd}(\mathrm{z}, \mathrm{n})=1$, so z has an inverse \bmod n.)

Problem \#2 (12 pts.) Digit sums

Consider an arbitrary natural number n.
Write n in decimal: $\mathrm{n}=\mathrm{Ak}^{*} 10^{\wedge} \mathrm{k}+\ldots+\mathrm{A} 1 * 10+\mathrm{A} 0$
Then

$$
\begin{aligned}
f(n) & =A k^{\wedge} 3+\ldots+A 1^{\wedge} 3+A 0^{\wedge} 3 \\
& =A k+\ldots+A 1+A 0 \\
& =A k^{*} 10^{\wedge} k+\ldots+A 1+10+ \\
& =n(\bmod 3)
\end{aligned}
$$

[by defn of f]

$$
=A k^{*} 10^{\wedge} k+\ldots+A 1+10+A 0 \quad\left[\text { since } 10^{\wedge} j=1(\bmod 3) \text { for all } j\right]
$$

n was arbitrary, so this must hold for all natural numbers.

Problem \#3 (12 pts.) Computing with polynomials

(a) $\mathrm{O}\left(\mathrm{d}^{\wedge} 2(\lg \mathrm{p})^{\wedge} 2\right)$ There are $\mathrm{O}\left(\mathrm{d}^{\wedge} 2\right)$ cross-terms, and each requires $\mathrm{O}\left((\lg \mathrm{p})^{\wedge} 2\right)$ work to do a modular multiplication and addition.
(b) $\mathrm{O}\left(\mathrm{d}(\lg \mathrm{p})^{\wedge} 2\right)$ Computing the sequence $1, \mathrm{u}, \mathrm{u}^{\wedge} 2, \ldots, \mathrm{u}^{\wedge} \mathrm{d} \bmod \mathrm{p}$ takes d multiplications, then multiplying by Ai mod p takes $\mathrm{d}+1$ multiplications, plus d more additions.
(c) 1 . Let $\mathrm{v}=\mathrm{f}(\mathrm{u}) \bmod \mathrm{p}$ using part (b).
2. Return $\mathrm{v}^{\wedge} 2 \bmod \mathrm{p}$

Takes $\mathrm{O}\left(\mathrm{d}(\lg \mathrm{p})^{\wedge} 2+(\lg \mathrm{p})^{\wedge} 2\right)=\mathrm{O}\left(\mathrm{d}(\lg \mathrm{p})^{\wedge} 2\right)$ time.

Note that computing $f(x)^{\wedge} 2$ first (using part (c)) then evaluating at u gives a slower algorithm.

Problem \#4 (8 pts.) Mystical polynomials

(a) No. $f(6)=57$, which is divisible by 3 and hence not prime. (But note that $f(3)=3$, which is prime, so $f(3)$ is not a counterexample to f being mystical.)
(b)
which means that 3 is a divisor of $f(3)$. Consequently, $f(3)$ cannot be prime, which implies that f is not mystical.

The bold statement is wrong. The case $f(3)=3$ is compatible with 3 dividing $f(3)$, and yet 3 is prime. Hence the underlined statement does not follow, and in fact the polynomial in part (a) gives an example where the reasoning breaks down. Worse still, the "theorem" is wrong: $f(x)=3$ is a counterexample (it is mystical).

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.

