CS 70Discrete Mathematics for CSFall 2001WagnerMidterm 1

PRINT your name:

SIGN your name;

This exam is closed-book, closed-notes. One page of notes is permitted. Calculators are permitted. Do all your work on the pages of this examination.

You have 2 hours. There are 4 questions, of varying credit (50 points total). You should be able to finish all the questions, so avoid spending too long on any one question.

1. (12 pts.) Short-answer questions

Translate each of the following claims into symbolic form. For instance, a good translation of "*n* is either at least three or at most five" would be " $n \ge 3 \lor n \le 5$."

Then, state whether the claim is true or false, and briefly justify your answer.

(a) [3 pts.] There is some natural number whose square root is not a natural number.

 $\exists n \in \mathbb{N}, \sqrt{n} \notin \mathbb{N} \text{ (or: } \exists n \in \mathbb{N}, \forall k \in \mathbb{N}, k^2 \neq n)$

- **TRUE**: n = 2 is an example, since we showed in class that $\sqrt{2}$ is not a natural number.
- (b) [4 pts.] For every natural number *n*, one can find another natural number *m* that is strictly smaller than *n*.

 $\forall n \in \mathbb{N}, \exists m \in \mathbb{N}, m < n$

- **FALSE**: for n = 0, there is no $m \in \mathbb{N}$ with m < 0.
- (c) [5 pts.] For each natural number k there is some lower bound ℓ so that $k^n \ge n!$ when $n \ge \ell$.

 $\forall k \in \mathbf{N}, \exists \ell \in \mathbf{N}, \forall n \in \mathbf{N}, n \ge \ell \Rightarrow k^n \ge n!$

FALSE: A counterexample is k = 1, since $1^n < n!$ for all n > 1.

2. (12 pts.) Reachability

In chess, a bishop can move diagonally in any of the four directions. Consider a 3×3 board, with a bishop initially placed at the location marked 'B' (see below). Prove that it can never reach the square marked 'X'.

Let *P* denote the property (of a configuration) that the bishop is on a light-colored square.

Let Q(n) denote the claim that, after any sequence of n moves, we end in a configuration satisfying P.

We prove by simple induction on *n* that Q(n) holds $\forall n \ge 0$.

Base case: Q(0) holds, since the initial configuration satisfies *P*.

Inductive step: We show $\forall n \ge 0, Q(n) \Rightarrow Q(n+1)$.

Pf: Fix *n*. Suppose Q(n) holds (otherwise there is nothing to prove). Consider any sequence of n+1 moves. This can be broken into an initial segment of *n* moves, followed by a final move. After the first moves, *P* holds, since we assumed Q(n). But now *P* must hold after the last move, too, since no single move can take the bishop from a light-colored to a dark-colored square. Thus Q(n+1) holds, since our choice of n+1 moves was arbitrary. \Box

We've shown that, in every reachable configuration, the bishop is on a light-colored square; since 'X' is on a dark square, 'X' is unreachable, no matter how many moves we make. \Box

3. (16 pts.) Proof by induction

Let the sequence a_0, a_1, a_2, \dots be defined by the recurrence relation

 $a_n = 2a_{n-1} - a_{n-2}$ for $n \ge 2$ and $a_0 = 1, a_1 = 2$.

Consider the following argument:

Theorem 1 $a_n \le n + 2$ for all $n \ge 0$.

Proof: We use strong induction on *n*. The base cases n = 0 and n = 1 hold, since $a_0 = 1 \le 0 + 2$ and $a_1 = 2 \le 1 + 2$. Now if $a_i \le i + 2$ for each i = 0, 1, ..., n - 1, for some $n \ge 2$, then we have

$$a_n = 2a_{n-1} - a_{n-2} \le 2((n-1)+2) - ((n-2)+2) \le 2n+2 - n \le n+2,$$

which shows that $a_n \le n + 2$ holds for all $n \ge 0$. \Box

(a) [6 pts.] Critique the above proof.

The problem is in the underlined step.

It is true that $a_{n-2} \le (n-2)+2$, but not valid to conclude that $2a_{n-1} - a_{n-2} \le 2a_{n-1} - ((n-2)+2);$

due to the negative sign, we must reverse the inequality.

(b) [10 pts.] Give a better proof of the theorem.

Claim:
$$a_n = n + 1$$
 for all $n \ge 0$.
Pf: By strong induction on n . Let $P(n) = a_n = n + 1$.
Base cases: $P(0)$ holds, since $a_0 = 1 = 0 + 1$.
 $P(1)$ holds, since $a_1 = 2 = 1 + 1$.
Inductive step: We show $P(0) \land P(1) \land \dots \land P(n-1) \Rightarrow P(n) \forall n \ge 2$
Pf: Assume $a_i = i + 1$ for $i = 0, 1, \dots, n-1$. Then
 $a_n = 2a_{n-2} - a_{n-2} = 2((n-1)+1) - ((n-2)+1)$
 $= 2n - (n-1) = n + 1$.

This shows that $a_n = n + 1 \forall n \ge 0$, from which the desired result $(a_n \le n + 2 \forall n \ge 0)$ follows.

The trick was to strengthen the hypothesis.

4. (10 pts.) Matchings

Recall that a *matching* on *n* boys and *m* girls is a pairing where each boy is married to exactly one girl and each girl is married to exactly one boy.

(c) [5 pts.] Let *M* be a stable matching on *n* boys and *n* girls where Alice is paired with Bob. Now Alice and Bob fly off the Bermuda on vacation. We are left with a matching, call it *L*, on the remaining *n*-1 boys and *n*-1 girls according to who is still paired up. Is *L* guaranteed to be a *stable* matching, if *M* is stable? Prove your answer.

YES. Assume not, i.e., we have an unstable pair in *L*:

 $\begin{array}{cccc} A_1 & & \\ \hline & & \\ A_2 & & \\ \hline & & \\ B_2 & & \\ \hline & & \\ B_2 & \\ \hline \\ B_2 & \\ \hline & \\ B_2 & \\ \hline & \\ B_2 & \\ \hline \\ B_2$

Then this is an unstable pair in M, contradicting the assumption of stability of M. Thus no unstable pair in L can exist, so L is stable, too.

(d) [5 pts.] If M, M' are two matchings, let $M \cup M'$ denote the configuration where each girl is married to the better of her two partners in M and M' (according to that girl's preference list). Is $M \cup M'$ guaranteed to be a matching? Prove your answer.

(Note that none of the matchings here are required to be stable.)

NO. Suppose A_1 , A_2 both prefer B_1 to B_2 . A_1 , A_2 are girls. Consider the following matchings:

which is not a matching, since B_1 has two mates and B_2 has none. So this is a counterexample.

Finished! You're done; this is the last page; there are no more questions.